Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 123: 111954, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812582

ABSTRACT

Developing advanced materials for wound dressings is a very challenging, yet unaddressed task. These systems are supposed to act as temporary skin substitutes, performing multiple functions, including fluid absorption and antimicrobial action, supporting cell proliferation and migration in order to promote the skin regeneration process. Following a global bioinspired approach, in this study, we developed a multifunctional textile for wound dressing applications. Biodegradable polyhydroxybutyrate/poly-3-caprolactone (PHB/PCL) mats were fabricated by electrospinning to mimic the extracellular matrix (ECM), thus providing structural and biochemical support to tissue regeneration. Furthermore, inspired by nature's strategy which exploits melanin as an effective weapon against pathogens infection, PHB/PCL mats were modified with hybrid Melanin-TiO2 nanostructures. These were combined to PHB/PCL mats following two different strategies: in-situ incorporation during electrospinning process, alternately ex-post coating by electrospraying onto obtained mats. All samples revealed huge water uptake and poor cytotoxicity towards HaCat eukaryotic cells. Melanin-TiO2 coating conferred PHB/PCL mats significant antimicrobial activity towards both Gram(+) and Gram(-) strains, marked hydrophilic properties as well as bioactivity which is expected to promote materials-cells interaction. This study is going to provide a novel paradigm for the design of active wound dressings for regenerative medicine.


Subject(s)
Anti-Infective Agents , Nanofibers , Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bandages
2.
J Colloid Interface Sci ; 561: 244-256, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31830736

ABSTRACT

HYPOTHESIS: Silica-wax colloidosomes find application in various fields, for instance through their use as microencapsules for triggered release of chemical components or as precursors for the production of Janus particles. The characteristics of these colloidosomes are highly dependent on the particles/water-oil system composition and experimental parameters. EXPERIMENTS: Different colloidosomes were prepared using silica particles (D¯ ≈ 295 nm) and a positively charged surfactant (cetyltrimethylammonium bromide, CTAB) as co-stabilizers of a wax in water. The CTAB concentration, type of stirring and wax addition procedure were systematically varied. The silica particles and colloidosomes formed were analysed by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The final percentage of the silica particles embedded on the wax colloidosomes (embedding yield) was estimated by a gravimetric method and the formation of monolayer or multilayer/clusters of silica particles at the wax surface was inspected with SEM. FINDINGS: The CTAB concentration and the wax addition procedure play a major role in obtaining an embedding yield close to 100% and a monolayer coverage of the colloidosomes surface. The results indicate the existence of a mechanism consisting of a dynamic redistribution of the surfactant between the interfaces present in the emulsion. The practical and theoretical insights provided can be used towards an efficient production and scale-up of silica-wax colloidosomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...