Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37513852

ABSTRACT

Origanum vulgare var. vulgare essential oil (OEO) is known as a natural product with multiple beneficial effects with application in dermatology. Oregano essential oil represents a potential natural therapeutic alternative for fibroepithelial polyps (FPs), commonly known as skin tags. Innovative formulations have been developed to improve the bioavailability and stability of essential oils. In this study, we aimed to evaluate the morphology of a polymeric-micelles-based hydrogel (OEO-PbH), the release and permeation profile of oregano essential oil, as well as to assess in vivo the potential effects on the degree of biocompatibility and the impact on angiogenesis in ovo, using a chick chorioallantoic membrane (CAM). Scanning electron microscopy (SEM) analysis indicated a regular aspect after the encapsulation process, while in vitro release studies showed a sustained release of the essential oil. None of the tested samples induced any irritation on the CAM and the limitation of the angiogenic process was noted. OEO-PbH, with a sustained release of OEO, potentially enhances the anti-angiogenic effect while being well tolerated and non-irritative by the vascularized CAM, especially on the blood vessels (BVs) in the presence of leptin treatment. This is the first evidence of in vivo antiangiogenic effects of a polymeric-micelle-loaded oregano essential oil, with further mechanistic insights for OEO-PbH formulation, involving leptin as a possible target. The findings suggest that the OEO-containing polymeric micelle hydrogel represents a potential future approach in the pathology of cutaneous FP and other angiogenesis-related conditions.

3.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36355533

ABSTRACT

Implementing metallic nanoparticles as research instruments for the transport of therapeutically active compounds remains a fundamentally vital work direction that can still potentially generate novelties in the field of drug formulation development. Gold nanoparticles (GNP) are easily tunable carriers for active phytocompounds like pentacyclic triterpenes. These formulations can boost the bioavailability of a lipophilic structure and, in some instances, can also enhance its therapeutic efficacy. In our work, we proposed a biological in vitro assessment of betulinic acid (BA)-functionalized GNP. BA-GNP were obtained by grafting BA onto previously synthesized citrate-capped GNP through the use of cysteamine as a linker. The nanoformulation was tested in HaCaT human keratinocytes and RPMI-7951 human melanoma cells, revealing selective cytotoxic properties and stronger antiproliferative effects compared to free BA. Further examinations revealed a pro-apoptotic effect, as evidenced by morphological changes in melanoma cells and supported by western blot data showing the downregulation of anti-apoptotic Bcl-2 expression coupled with the upregulation of pro-apoptotic Bax. GNP also significantly inhibited mitochondrial respiration, confirming its mitochondrial-targeted activity.

4.
Molecules ; 27(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36364186

ABSTRACT

Betulinic acid (BA) has been extensively studied in recent years mainly for its antiproliferative and antitumor effect in various types of cancers. Limited data are available regarding the pharmacokinetic profile of BA, particularly its metabolic transformation in vivo. In this study, we present the screening and structural investigations by ESI Orbitrap MS in the negative ion mode and CID MS/MS of phase I and phase II metabolites detected in mouse plasma after the intraperitoneal administration of a nanoemulsion containing BA in SKH 1 female mice. Obtained results indicate that the main phase I metabolic reactions that BA undergoes are monohydroxylation, dihydroxylation, oxidation and hydrogenation, while phase II reactions involved sulfation, glucuronidation and methylation. The fragmentation pathway for BA and its plasma metabolites were elucidated by sequencing of the precursor ions by CID MS MS experiments.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Female , Mice , Animals , Tandem Mass Spectrometry/methods , Pentacyclic Triterpenes , Ions , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Betulinic Acid
5.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639035

ABSTRACT

Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18-1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4',6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biological Products/pharmacology , Triterpenes/pharmacology , Angiogenesis Inhibitors , Antineoplastic Agents/chemistry , Binding Sites , Biological Products/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Triterpenes/chemistry
6.
Materials (Basel) ; 14(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202095

ABSTRACT

The current study presents the effect of naked Fe3O4@Carbon nanoparticles obtained by the combustion method on primary human gingival fibroblasts (HGFs) and primary gingival keratinocytes (PGKs)-relevant cell lines of buccal oral mucosa. In this regard, the objectives of this study were as follows: (i) development via combustion method and characterization of nanosized magnetite particles with carbon on their surface, (ii) biocompatibility assessment of the obtained magnetic nanoparticles on HGF and PGK cell lines and (iii) evaluation of possible irritative reaction of Fe3O4@Carbon nanoparticles on the highly vascularized chorioallantoic membrane of a chick embryo. Physicochemical properties of Fe3O4@Carbon nanoparticles were characterized in terms of phase composition, chemical structure, and polymorphic and molecular interactions of the chemical bonds within the nanomaterial, magnetic measurements, ultrastructure, morphology, and elemental composition. The X-ray diffraction analysis revealed the formation of magnetite as phase pure without any other secondary phases, and Raman spectroscopy exhibit that the pre-formed magnetic nanoparticles were covered with carbon film, resulting from the synthesis method employed. Scanning electron microscopy shown that nanoparticles obtained were uniformly distributed, with a nearly spherical shape with sizes at the nanometric level; iron, oxygen, and carbon were the only elements detected. While biological screening of Fe3O4@Carbon nanoparticles revealed no significant cytotoxic potential on the HGF and PGK cell lines, a slight sign of irritation was observed on a limited area on the chorioallantoic membrane of the chick embryo.

7.
Materials (Basel) ; 14(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925656

ABSTRACT

The design and development of ceramic structures based on 3D scaffolding as dental bone substitutes has become a topic of great interest in the regenerative dentistry research area. In this regard, the present study focuses on the development of two scaffold-type structures obtained from different commercial dental ceramics by employing the foam replication method. At the same time, the study underlines the physicochemical features and the biological profiles of the newly developed scaffolds, compared to two traditional Cerabone® materials used for bone augmentation, by employing both the in vitro Alamar blue proliferation test at 24, 48 and 96 h poststimulation and the in ovo chick chorioallantoic membrane (CAM) assay. The data reveal that the newly developed scaffolds express comparable results with the traditional Cerabone® augmentation masses. In terms of network porosity, the scaffolds show higher pore interconnectivity compared to Cerabone® granules, whereas regarding the biosafety profile, all ceramic samples manifest good biocompatibility on primary human gingival fibroblasts (HGFs); however only the Cerabone® samples induced proliferation of HGF cells following exposure to concentrations of 5 and 10 µg/mL. Additionally, none of the test samples induce irritative activity on the vascular developing plexus. Thus, based on the current results, the preliminary biosecurity profile of ceramic scaffolds supports the usefulness for further testing of high relevance for their possible clinical dental applications.

8.
Oncol Rep ; 45(4)2021 04.
Article in English | MEDLINE | ID: mdl-33649849

ABSTRACT

Subsequently to the publication of the above paper, the authors have realized that they should have credited a Professor René Csuk [Martin­Luther­Universität Halle­Wittenberg, Halle (Saale), Germany] for the use of a compound that his group synthesized in the study. Therefore, the authors wish to include the following text in the Acknowledgements' section of the Declarations: 'The authors are grateful to Professor Rene Csuk, Department of Organic Chemistry, Martin­Luther University Halle­Wittenberg, for providing us with the rhodamine B­conjugated oleanolic acid derivative (RhodOA)'. All the named authors agree to this Corrigendum, and apologize to Professor Csuk for the upset and inconvenience caused. [the original article was published in Oncology Reports 44: 1169­1183, 2020; DOI: 10.3892/or.2020.7666].

9.
Materials (Basel) ; 13(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322183

ABSTRACT

Selecting the most biocompatible orthodontic implant available on the market may be a major challenge, given the wide array of orthodontic devices currently available on the market. The latest scientific data have suggested that in vitro evaluations using oral cell lines provide reliable data regarding the toxicity of residual particles released by different types of orthodontic devices. In this regard, the in vitro biocompatibility of three different commercially available implants (stainless steel and titanium-based implants) was assessed. METHODS: As an in vitro model, human gingival fibroblasts (HGFs) were employed to evaluate the cellular morphology, cell viability, and cytotoxicity by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays at 24 h and 72 h post-exposure to test implants. RESULTS: The results correlate the composition and topography of the implant surface with biological experimental evaluations related to directly affected cells (gingival fibroblasts) and toxicological results on blood vessels (hen's egg test-chorioallantoic membrane (HET-CAM) assay). The stainless steel implant exhibits a relative cytotoxicity against HGF cells, while the other two samples induced no significant alterations of HGF cells. CONCLUSION: Among the three test orthodontic implants, the stainless steel implant induced slight cytotoxic effects, thus increased vigilance is required in their clinical use, especially in patients with high sensitivity to nickel.

10.
Oncol Rep ; 44(3): 1169-1183, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32705265

ABSTRACT

Cancer remains a major health problem worldwide due to its high mortality rate. New therapeutic options highlight the importance of discovering new compounds that target the tumor microenvironment, interrupt angiogenesis and act selectively. The present study assessed the antitumor effect and investigated the mechanism of action of a rhodamine B­conjugated oleanolic acid derivative (RhodOA). Consequently, the compound was tested on different human tumor cell lines (A375 melanoma, A549 lung adenocarcinoma and MDA­MB­231 breast adenocarcinoma) and on a non­tumor cell line HaCaT human keratinocyte. RhodOA produced a dose­dependent decrease in tumor cell viability especially in the melanoma cells while affecting the keratinocytes less. In melanoma cells, RhodOA reduced cell migration and produced condensation of cell nuclei and of actin fibers. Furthermore, an impairment in melanoma cell mitochondrial function was observed, while the mitochondrial function of keratinocytes was left intact. In the in ovo chorioallantoic membrane model, RhodOA elicited antiangiogenic effect, without showing irritation effect on the membrane. The study provides information on the selective antitumor effect of the derivative and its ability to inhibit cellular respiration, therefore RhodOA can be classified as 'MITOCAN'.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Oleanolic Acid/pharmacology , Rhodamines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Mitochondria/drug effects , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Oleanolic Acid/chemistry , Oleanolic Acid/therapeutic use , Rhodamines/chemistry , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...