Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 10(6): 3009-3017, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31259070

ABSTRACT

Fluorescence spectroscopy is a sensitive, fast and non-invasive tool for a diagnostics of cancerous gastrointestinal lesions. It could be applied for in situ detection of tumours during primary endoscopic observations or as add-on measurement modality during microscopic observations of tissue histology slides for their initial or retrospective diagnosis. Therefore, we are looking for diagnostically important features of normal and cancerous tissue areas in a broad spectral range for gastrointestinal tissues ex vivo using two steady-state macroscopic fluorescent spectroscopic modalities and by confocal fluorescent microscopic detection. Results obtained from autofluorescence spectroscopy of benign and malignant lower part gastrointestinal tract (GIT) lesions from freshly excised tissues during surgical removal of the lesions in 18 patients (22 lesions), were compared with the spectral measurements obtained during confocal fluorescent microscopy observations of unstained tissue slides using 405 nm excitation. Excitation-emission matrices (EEMs) were used for ex vivo measurements with applied excitation in 280-440 nm spectral region and emission observed between 300 and 700 nm. Synchronous fluorescence spectroscopy (SFS) approach was also applied to improve the spectral resolution of the observed complex emission spectra. Specific fluorescent features observed, related to presence of structural proteins, co-enzymes and endogenous porphyrins in the tissues investigated, allow discriminating normal mucosa from benign polyps and malignant carcinoma lesions with diagnostic accuracy up to 94.4%.

2.
Skin Res Technol ; 13(4): 350-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17908185

ABSTRACT

BACKGROUND/PURPOSE: Laser-induced autofluorescence spectroscopy provides excellent possibilities for medical diagnostics of different tissue pathologies including cancer. However, to create the whole picture of pathological changes, investigators collect spectral information from patients in vivo or they study different tumor models to obtain objective information for fluorescent properties of every kind of healthy and diseased tissue. Therefore, it is very important to find the most appropriate, and close to the human skin, animal samples from the fluorescence point of view, which will allow the extrapolation of the animal data to human spectroscopic diagnostics. METHODS: In the present work, we examined the autofluorescence properties of different animal skin tissues, which are considered as the most common skin models. A nitrogen laser was used as an excitation source. Samples of healthy mouse, chicken and pig skin in vivo and/or ex vivo were studied and were compared with results obtained from investigations of healthy human skin in vivo. RESULTS AND CONCLUSION: Specific features of the recorded spectra are discussed and the possible origin of the obtained fluorescence signals is proposed. Quantitative evaluation of data extrapolation for each skin type is also depicted.


Subject(s)
Dermatology/instrumentation , Lasers , Skin Physiological Phenomena , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , Animals , Chickens , Fluorescence , Humans , In Vitro Techniques , Mice , Models, Animal , Species Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...