Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(11): 19781-19794, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221745

ABSTRACT

Plasmonic-based integrated nanophotonic modulators, despite their promising features, have one key limiting factor of large insertion loss (IL), which limits their practical potential. To combat this, we utilize a plasmon-assisted approach through the lens of surface-to-volume ratio to realize a 4-slot based EAM with an extinction ratio (ER) of 2.62 dB/µm and insertion loss (IL) of 0.3 dB/µm operating at ∼1 GHz and a single slot design with ER of 1.4 dB/µm and IL of 0.25 dB/µm operating at ∼20 GHz, achieved by replacing the traditional metal contact with heavily doped indium tin oxide (ITO). Furthermore, our analysis imposes realistic fabrication constraints, and material properties, and illustrates trade-offs in the performance that must be carefully optimized for a given scenario.

2.
Biosensors (Basel) ; 12(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35624659

ABSTRACT

Wearable biosensors for continuous health monitoring, particularly those used for glucose detection, have a limited operational lifetime due to biodegradation and fouling. As a result, patients must change sensors frequently, increasing cost and patient discomfort. Arrays of multiple sensors, where the individual devices can be activated on demand, increase overall operational longevity, thereby reducing cost and improving patient outcomes. This work demonstrates the feasibility of this approach via decomposition of combustible nitrocellulose membranes that protect the individual sensors from exposure to bioanalytes using a current pulse. Metal contacts, connected by graphene-loaded PEDOT:PSS polymer on the surface of the membrane, deliver the required energy to decompose the membrane. Nitrocellulose membranes with a thickness of less than 1 µm consistently transfer on to polydimethylsiloxane (PDMS) wells. An electrical energy as low as 68 mJ has been shown to suffice for membrane decomposition.


Subject(s)
Biosensing Techniques , Graphite , Collodion , Humans , Polymers
3.
Drug Chem Toxicol ; 45(2): 767-774, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32529856

ABSTRACT

The Portable In Vitro Exposure Cassette (PIVEC) was developed for on-site air quality testing using lung cells. Here, we describe the incorporation of a sensor within the PIVEC for real time monitoring of cellular oxidative stress during exposure to contaminated air. An electrochemical, enzymatic biosensor based on cytochrome c (cyt c) was selected to measure reactive oxygen species (ROS), including hydrogen peroxide and super oxides, due to the stability of signal over time. Human A549 lung cells were grown at the air-liquid interface and exposed within the PIVEC to dry 40 nm copper nanoparticle aerosols for 10 minutes. The generation of ROS compounds was measured during exposure and post-exposure for one hour using the biosensor and compared to intracellular ROS determined using the 2',7'-dichlorodihydrofluoroscein diacetate (DCFH-DA) assay. A similar increase in oxidative stress upon aerosol exposure was measured using both the cyt c biosensor and DCFH-DA assay. The incorporation of a biosensor within the PIVEC is a unique, first-of-its-kind system designed to monitor the real-time effect of aerosols.


Subject(s)
Hydrogen Peroxide , Oxidative Stress , Aerosols/chemistry , Aerosols/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Oxidation-Reduction , Proof of Concept Study , Reactive Oxygen Species
4.
Opt Lett ; 46(9): 2240-2243, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33929464

ABSTRACT

Typical guided-mode resonance (GMR) transmission filter design, which is based on a single ridge per period, necessitates multiple etching/fabrication steps for implementing an array of filters (having different transmission bands) on the same substrate. To address this problem, we demonstrate dual-period narrow bandpass GMR filters that offer more degrees of freedom, two periods and two fill-factors, for tuning the filter characteristics and achieving wider stop bands without changing the grating height. A set of six transmission filters with well-separated passbands in the short-wave infrared region was designed using COMSOL Multiphysics simulations and produced on the same silicon-on-quartz wafer in a single fabrication run. The $90\;{\unicode{x00B5}{\rm m}}\;{\times}\;90\;{\unicode{x00B5}{\rm m}}$ size filters exhibited passbands as narrow as 15 nm with peak-wavelength tunability over 200 nm, flat stop bands as wide as ${\sim}{400}\;{\rm nm}$, and peak transmittance reaching 87%. The experimental transmission spectra were in good agreement with the corresponding simulations. These findings pave the way for the realization of pixel size filter arrays for multispectral image sensors.

5.
J Vis Exp ; (140)2018 10 23.
Article in English | MEDLINE | ID: mdl-30417860

ABSTRACT

Heterostructure field effect transistors (HFETs) utilizing a two dimensional electron gas (2DEG) channel have a great potential for high speed device applications. Zinc oxide (ZnO), a semiconductor with a wide bandgap (3.4 eV) and high electron saturation velocity has gained a great deal of attention as an attractive material for high speed devices. Efficient gate modulation, however, requires high-quality Schottky contacts on the barrier layer. In this article, we present our Schottky diode fabrication procedure on Zn-polar BeMgZnO/ZnO heterostructure with high density 2DEG which is achieved through strain modulation and incorporation of a few percent Be into the MgZnO-based barrier during growth by molecular beam epitaxy (MBE). To achieve high crystalline quality, nearly lattice-matched high-resistivity GaN templates grown by metal-organic chemical vapor deposition (MOCVD) are used as the substrate for the subsequent MBE growth of the oxide layers. To obtain the requisite Zn-polarity, careful surface treatment of GaN templates and control over the VI/II ratio during the growth of low temperature ZnO nucleation layer are utilized. Ti/Au electrodes serve as Ohmic contacts, and Ag electrodes deposited on the O2 plasma pretreated BeMgZnO surface are used for Schottky contacts.


Subject(s)
Electrons/therapeutic use , Lasers, Semiconductor/therapeutic use , Zinc Oxide/chemistry , Electricity , Microscopy, Atomic Force , Surface Properties
6.
ACS Appl Mater Interfaces ; 10(43): 37651-37660, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30280560

ABSTRACT

In semiconductor heterojunction, polarity critically governs the physical properties, with an impact on electronic or optoelectronic devices through the presence of pyroelectric and piezoelectric fields at the active heteropolar interface. In the present work, the abrupt O-polar ZnO/Ga-polar GaN heterointerface was successfully achieved by using high O/Zn ratio flux during the ZnO nucleation growth. Atomic-resolution high-angle annular dark-field and bright-field transmission electron microscopy observation revealed that this polarity inversion confines within one monolayer by forming the (0001) plane inversion domain boundary (IDB) at the ZnO/GaN heterointerface. Through theoretical calculation and topology analysis, the geometry of this IDB was determined to possess an octahedral Ga atomic layer in the interface, with one O/N layer symmetrically bonded at the tetrahedral site. The computed electronic structure of all considered IDBs revealed a metallic character at the heterointerface. More interestingly, the presence of two-dimensional (2D) hole gas (2DHG) or 2D electron gas (2DEG) is uncovered by investigating the chemical bonding and charge transfer at the heterointerface. This work not only clarifies the polarity control and interfacial configuration of the O-polar ZnO/Ga-polar GaN heterojunction but, more importantly, also gives insight into their further application on heterojunction field-effect transistors as well as hybrid ZnO/GaN optoelectronic devices. Moreover, such polarity control at the monolayer scale might have practical implications for heterojunction devices based on other polar semiconductors.

7.
Toxicol Res (Camb) ; 7(5): 754-759, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30210779

ABSTRACT

This study evaluated the cytocompatibility of single- and poly-crystalline ZnO thin films using extract and direct contact methods. Exposure to poly-crystalline ZnO extract resulted in reduced cell viability, on average 82%/70% as measured by MTS/LDH assays, respectively. Direct exposure to both single- and poly-crystalline ZnO thin films resulted in reduced cell viability, which was attributed to anoikis due to inhibition of cell adhesion to the substrate by zinc. Intracellular zinc imaging suggests that single crystalline ZnO thin films do not result in a significant change in intracellular zinc concentrations. Overall, the results suggest that single-crystalline ZnO thin films have better short-term (24 h) cytocompatibility and support their potential to serve as a biocompatible sensor material.

8.
Microsc Microanal ; 20(3): 864-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24667066

ABSTRACT

Aberration-corrected scanning transmission electron microscopy images of the In(0.15)Ga(0.85)N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer's upper boundary. The area imaged was measured to be 2.9 nm thick using position averaged convergent beam electron diffraction, ensuring the sample was thin enough to capture compositional variation if it was present. A focused ion beam prepared sample with a very large thin area provides the possibility to directly observe large fluctuations in the active layer thickness that constrict the active layer at an average lateral length scale of 430 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...