Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Appl Stat ; 18(1): 858-881, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38784669

ABSTRACT

In scientific studies involving analyses of multivariate data, basic but important questions often arise for the researcher: Is the sample exchangeable, meaning that the joint distribution of the sample is invariant to the ordering of the units? Are the features independent of one another, or perhaps the features can be grouped so that the groups are mutually independent? In statistical genomics, these considerations are fundamental to downstream tasks such as demographic inference and the construction of polygenic risk scores. We propose a non-parametric approach, which we call the V test, to address these two questions, namely, a test of sample exchangeability given dependency structure of features, and a test of feature independence given sample exchangeability. Our test is conceptually simple, yet fast and flexible. It controls the Type I error across realistic scenarios, and handles data of arbitrary dimensions by leveraging large-sample asymptotics. Through extensive simulations and a comparison against unsupervised tests of stratification based on random matrix theory, we find that our test compares favorably in various scenarios of interest. We apply the test to data from the 1000 Genomes Project, demonstrating how it can be employed to assess exchangeability of the genetic sample, or find optimal linkage disequilibrium (LD) splits for downstream analysis. For exchangeability assessment, we find that removing rare variants can substantially increase the p-value of the test statistic. For optimal LD splitting, the V test reports different optimal splits than previous approaches not relying on hypothesis testing. Software for our methods is available in R (CRAN: flintyR) and Python (PyPI: flintyPy).

2.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352303

ABSTRACT

Polygenic scores (PGSs), increasingly used in clinical settings, frequently include many genetic variants, with performance typically peaking at thousands of variants. Such highly parameterized PGSs often include variants that do not pass a genome-wide significance threshold. We propose a mathematical perspective that renders the effects of many of these non-significant variants random rather than causal, with the randomness capturing population structure. We devise methods to assess variant effect randomness and population stratification bias. Applying these methods to 141 traits from the UK Biobank, we find that, for many PGSs, the effects of non-significant variants are considerably random, with the extent of randomness associated with the degree of overfitting to population structure of the discovery cohort. Our findings explain why highly parameterized PGSs simultaneously have superior cohort-specific performance and limited generalizability, suggesting the critical need for variant randomness tests in PGS evaluation. Supporting code and a dashboard are available at https://github.com/songlab-cal/StratPGS.

3.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-37873118

ABSTRACT

Whereas protein language models have demonstrated remarkable efficacy in predicting the effects of missense variants, DNA counterparts have not yet achieved a similar competitive edge for genome-wide variant effect predictions, especially in complex genomes such as that of humans. To address this challenge, we here introduce GPN-MSA, a novel framework for DNA language models that leverages whole-genome sequence alignments across multiple species and takes only a few hours to train. Across several benchmarks on clinical databases (ClinVar, COSMIC, OMIM), experimental functional assays (DMS, DepMap), and population genomic data (gnomAD), our model for the human genome achieves outstanding performance on deleteriousness prediction for both coding and non-coding variants.

4.
bioRxiv ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090514

ABSTRACT

Fine-mapping methods, which aim to identify genetic variants responsible for complex traits following genetic association studies, typically assume that sufficient adjustments for confounding within the association study cohort have been made, e.g., through regressing out the top principal components (i.e., residualization). Despite its widespread use, however, residualization may not completely remove all sources of confounding. Here, we propose a complementary stability-guided approach that does not rely on residualization, which identifies consistently fine-mapped variants across different genetic backgrounds or environments. We demonstrate the utility of this approach by applying it to fine-map eQTLs in the GEUVADIS data. Using 378 different functional annotations of the human genome, including recent deep learning-based annotations (e.g., Enformer), we compare enrichments of these annotations among variants for which the stability and traditional residualization-based fine-mapping approaches agree against those for which they disagree, and find that the stability approach enhances the power of traditional fine-mapping methods in identifying variants with functional impact. Finally, in cases where the two approaches report distinct variants, our approach identifies variants comparably enriched for functional annotations. Our findings suggest that the stability principle, as a conceptually simple device, complements existing approaches to fine-mapping, reinforcing recent advocacy of evaluating cross-population and cross-environment portability of biological findings. To support visualization and interpretation of our results, we provide a Shiny app, available at: https://alan-aw.shinyapps.io/stability_v0/.

5.
Nat Commun ; 9(1): 2077, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802241

ABSTRACT

In human populations, changes in genetic variation are driven not only by genetic processes, but can also arise from cultural or social changes. An abrupt population bottleneck specific to human males has been inferred across several Old World (Africa, Europe, Asia) populations 5000-7000 BP. Here, bringing together anthropological theory, recent population genomic studies and mathematical models, we propose a sociocultural hypothesis, involving the formation of patrilineal kin groups and intergroup competition among these groups. Our analysis shows that this sociocultural hypothesis can explain the inference of a population bottleneck. We also show that our hypothesis is consistent with current findings from the archaeogenetics of Old World Eurasia, and is important for conceptions of cultural and social evolution in prehistory.


Subject(s)
Chromosomes, Human, Y/genetics , Cultural Characteristics , Genetic Variation/genetics , Hierarchy, Social , Models, Genetic , Africa , Asia , Computer Simulation , DNA, Mitochondrial/genetics , Europe , Haplotypes/genetics , Humans , Male , Population Dynamics
6.
J Math Biol ; 77(3): 711-737, 2018 09.
Article in English | MEDLINE | ID: mdl-29569105

ABSTRACT

The homozygosity and the frequency of the most frequent allele at a polymorphic genetic locus have a close mathematical relationship, so that each quantity places a tight constraint on the other. We use the theory of majorization to provide a simplified derivation of the bounds on homozygosity J in terms of the frequency M of the most frequent allele. The method not only enables simpler derivations of known bounds on J in terms of M, it also produces analogous bounds on entropy statistics for genetic diversity and on homozygosity-like statistics that range in their emphasis on the most frequent allele in relation to other alleles. We illustrate the constraints on the statistics using data from human populations. The approach suggests the potential of the majorization method as a tool for deriving inequalities that characterize mathematical relationships between statistics in population genetics.


Subject(s)
Genetic Variation , Genetics, Population/statistics & numerical data , Models, Genetic , Computer Simulation , Gene Frequency , Homozygote , Humans , Mathematical Concepts , Microsatellite Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...