Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2836, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990579

ABSTRACT

Bioinspired vascular networks transport heat and mass in hydrogels, microfluidic devices, self-healing and self-cooling structures, filters, and flow batteries. Lengthy, multistep fabrication processes involving solvents, external heat, and vacuum hinder large-scale application of vascular networks in structural materials. Here, we report the rapid (seconds to minutes), scalable, and synchronized fabrication of vascular thermosets and fiber-reinforced composites under ambient conditions. The exothermic frontal polymerization (FP) of a liquid or gelled resin facilitates coordinated depolymerization of an embedded sacrificial template to create host structures with high-fidelity interconnected microchannels. The chemical energy released during matrix polymerization eliminates the need for a sustained external heat source and greatly reduces external energy consumption for processing. Programming the rate of depolymerization of the sacrificial thermoplastic to match the kinetics of FP has the potential to significantly expedite the fabrication of vascular structures with extended lifetimes, microreactors, and imaging phantoms for understanding capillary flow in biological systems.

2.
Nature ; 557(7704): 223-227, 2018 05.
Article in English | MEDLINE | ID: mdl-29743687

ABSTRACT

Thermoset polymers and composite materials are integral to today's aerospace, automotive, marine and energy industries and will be vital to the next generation of lightweight, energy-efficient structures in these enterprises, owing to their excellent specific stiffness and strength, thermal stability and chemical resistance1-5. The manufacture of high-performance thermoset components requires the monomer to be cured at high temperatures (around 180 °C) for several hours, under a combined external pressure and internal vacuum 6 . Curing is generally accomplished using large autoclaves or ovens that scale in size with the component. Hence this traditional curing approach is slow, requires a large amount of energy and involves substantial capital investment6,7. Frontal polymerization is a promising alternative curing strategy, in which a self-propagating exothermic reaction wave transforms liquid monomers to fully cured polymers. We report here the frontal polymerization of a high-performance thermoset polymer that allows the rapid fabrication of parts with microscale features, three-dimensional printed structures and carbon-fibre-reinforced polymer composites. Precise control of the polymerization kinetics at both ambient and elevated temperatures allows stable monomer solutions to transform into fully cured polymers within seconds, reducing energy requirements and cure times by several orders of magnitude compared with conventional oven or autoclave curing approaches. The resulting polymer and composite parts possess similar mechanical properties to those cured conventionally. This curing strategy greatly improves the efficiency of manufacturing of high-performance polymers and composites, and is widely applicable to many industries.

3.
Langmuir ; 31(24): 6688-94, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26011098

ABSTRACT

We report a one-step method of forming non-close-packed (NCP) pore arrays of micro- and sub-micropores using chloroform-based solutions of polystyrene acidified with hydrogen bromide for breath figure (BF) patterning. As BF patterning takes place, water vapor condenses onto the polystyrene solution, forming water droplets on the solution surface. Concurrently, preferential ion partitioning of hydrogen bromide leads to positively charged water droplets, which experience interdroplet electrostatic repulsion. Self-organization of charged water droplets because of surface flow and subsequent evaporation of the droplet templates result in ordered BF arrays with pore separation/diameter (L/D) ratios of up to 16.5. Evidence from surface potential scans show proof for preferential ion partitioning of HBr. Radial distribution functions and Voronoi polygon analysis of pore arrays show that they possess a high degree of conformational order. Past fabrication methods of NCP structures typically require multi-step processes. In contrast, we have established a new route for facile self-assembly of previously inaccessible patterns, which comprises of only a single operational step.

SELECTION OF CITATIONS
SEARCH DETAIL
...