Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mutat Res ; 828: 111853, 2024.
Article in English | MEDLINE | ID: mdl-38401335

ABSTRACT

The widespread use of chemicals and the presence of chemical and metal residues in various foods, beverages, and other consumables have raised concerns about the potential for enhanced toxicity. This study assessed the cytotoxic effects of Piperonyl butoxide (PBO) and its enhancement by combination with major contamination chemicals including Imidacloprid and metals, using different cytotoxic and genotoxic assays in Chinese hamster ovary (CHO) cells. PBO exhibited elevated cytotoxic effects in poly (ADP-ribose) polymerase (PARP) deficient CHO mutants but not in Glutathione S-transferase deficient CHO mutants. PBO cytotoxicity was enhanced by PARP inhibitor, Olaparib. PBO cytotoxicity was also enhanced with co-exposure to Imidacloprid, Lead Chloride, or Sodium Selenite. PBO induces γH2AX foci formation and apoptosis. The induction of DNA damage markers was elevated with PARP deficiency and co-exposure to Imidacloprid, Lead Chloride, or Sodium Selenite. Moreover, PBO triggers to form etch pits on plastic surfaces. These results revealed novel mechanisms of PBO cytotoxicity associated with PARP and synergistic effects with other environmental pollutants. The toxicological mechanisms underlying exposure to various combinations at different concentrations, including concentrations below the permitted limit of intake or the level of concern, require further study.


Subject(s)
Cricetulus , Drug Synergism , Neonicotinoids , Nitro Compounds , Piperonyl Butoxide , Animals , CHO Cells , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Piperonyl Butoxide/toxicity , Imidazoles/toxicity , Cricetinae , Apoptosis/drug effects , DNA Damage/drug effects , Lead/toxicity , Piperazines/toxicity , Insecticides/toxicity , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Phthalazines
2.
Glob Chang Biol ; 25(10): 3193-3200, 2019 10.
Article in English | MEDLINE | ID: mdl-31276260

ABSTRACT

Drought, widely studied as an important driver of ecosystem dynamics, is predicted to increase in frequency and severity globally. To study drought, ecologists must define or at least operationalize what constitutes a drought. How this is accomplished in practice is unclear, particularly given that climatologists have long struggled to agree on definitions of drought, beyond general variants of "an abnormal deficiency of water." We conducted a literature review of ecological drought studies (564 papers) to assess how ecologists describe and study drought. We found that ecologists characterize drought in a wide variety of ways (reduced precipitation, low soil moisture, reduced streamflow, etc.), but relatively few publications (~32%) explicitly define what are, and are not, drought conditions. More troubling, a surprising number of papers (~30%) simply equated "dry conditions" with "drought" and provided little characterization of the drought conditions studied. For a subset of these, we calculated Standardized Precipitation Evapotranspiration Index values for the reported drought periods. We found that while almost 90% of the studies were conducted under conditions quantifiable as slightly to extremely drier than average, ~50% were within the range of normal climatic variability. We conclude that the current state of the ecological drought literature hinders synthesis and our ability to draw broad ecological inferences because drought is often declared but is not explicitly defined or well characterized. We suggest that future drought publications provide at least one of the following: (a) the climatic context of the drought period based on long-term records; (b) standardized climatic index values; (c) published metrics from drought-monitoring organizations; (d) a quantitative definition of what the authors consider to be drought conditions for their system. With more detailed and consistent quantification of drought conditions, comparisons among studies can be more rigorous, increasing our understanding of the ecological effects of drought.


Subject(s)
Droughts , Ecosystem , Ecology , Soil , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...