Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37752374

ABSTRACT

Due to their distinctive properties, several eco-friendly metal oxide nanoparticles were assessed for their possible cardioprotective properties. Acrylamide (ACD), a pervasive chemical in food and the environment, has been linked to cardiac toxicity. Therefore, this study examined the probable protective effect of green synthesized zinc oxide nanoparticles (GS-ZNPs) against ACD-oral exposure-induced cardiac damage in rats. For 60 days, 40 male Sprague-Dawley rats were separated into four sets that orally administered distilled water, 10-mg GS-ZNP/kg b.w., 20-mg ACD/kg b.w., or GS-ZNP + ACD. Then, cardiac damage indicators comprising CPK, CK-MB, cTn, and LDH were assessed. Besides, cardiac tissues' architecture, oxidative stress indicators, and Zn content were evaluated. The mRNA expression of the ERS-related genes, including ATF3, ATF4, ATF6, XBP-1, CHOP, JNKs, and BiP, were determined. Moreover, ERS-dependent anti-apoptotic (BCL-2) and apoptotic (Caspase-3 and BAX) genes mRNA expression were analyzed. The results showed that GS-ZNP significantly alleviated the increased ACD-induced serum cardiac damage indicators, MDA tissue content, and histopathological changes. Furthermore, the ACD-induced reduction of antioxidants and Zn heart contents were significantly reestablished by GS-ZNP. Furthermore, the ACD-induced upregulation of the ERS-encoding genes and apoptotic genes was reversed by GS-ZNP. Besides, the ACD-induced BCL-2 downregulation was counteracted by GS-ZNP. Overall, GS-ZNP could be a biologically potent compound to alleviate ACD's cardiotoxic effects, possibly by controlling the ERS and apoptosis-related genes and antioxidant activity.

2.
Int Immunopharmacol ; 118: 110061, 2023 May.
Article in English | MEDLINE | ID: mdl-36989891

ABSTRACT

BACKGROUND AND AIMS: Fibromyalgia is a widespread chronic pain syndrome associated with several comorbid conditions that affect the quality of patients' life. Its pathogenesis is complex, and the treatment strategies are limited by partial efficacy and potential adverse effects. So, our aim was to investigate the possible ameliorative effects of ethosuximide and sodium butyrate on fibromyalgia and compare their effects to pregabalin. MATERIALS AND METHODS: In a mouse model of reserpine induced fibromyalgia, the effect of ethosuximide, sodium butyrate, and pregabalin was investigated. Evaluation of mechanical allodynia, cold hypersensitivity, anxiety, cognitive impairment, and depression was performed. Also, the brain and spinal cord tissue serotonin, dopamine and glutamate in addition to the serum levels of interleukin (IL)-4 and transforming growth factor beta 1 (TGF-ß1) were assayed. Moreover, the expression of nuclear factor kappa B (NF-κB) synaptophysin was immunoassayed in the hippocampal tissues. KEY FINDINGS: Ethosuximide and sodium butyrate restored the behavioral tests to the normal values except for the antidepressant effect which was evident only with ethosuximide. Both drugs elevated the levels of the anti-inflammatory cytokines IL-4 and TGF-ß1, reduced the hippocampal NF-κB, and increased synaptophysin expression with superiority of sodium butyrate. Ethosuximide reduced only spinal cord and brain glutamate while improved brain dopamine while sodium butyrate elevated spinal cord dopamine and serotonin with no effect on glutamate. Also, sodium butyrate elevated brain serotonin and reduced glutamate with no effect on brain dopamine. SIGNIFICANCE: Each of sodium butyrate and ethosuximide would serve as a promising therapeutic modality for management of fibromyalgia and its comorbid conditions.


Subject(s)
Fibromyalgia , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1 , Fibromyalgia/drug therapy , Fibromyalgia/metabolism , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Ethosuximide/therapeutic use , Pregabalin/therapeutic use , Interleukin-4 , Synaptophysin/therapeutic use , Dopamine/therapeutic use , Serotonin , Glutamates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...