Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Brain Behav ; 6(5): 432-43, 2007 Jul.
Article in English | MEDLINE | ID: mdl-16939635

ABSTRACT

We previously applied selective breeding on outbred mice to increase maternal aggression (maternal defense). In this study, we compared gene expression within a continuous region of the central nervous system (CNS) involved in maternal aggression (hypothalamus and preoptic regions) between lactating selected (S) and nonselected control (C) mice (n= 6 per group). Using microarrays representing over 40,000 genes or expressed sequence tags, two statistical algorithms were used to identify significant differences in gene expression: robust multiarray and the probe logarithmic intensity error method. Approximately 200 genes were identified as significant using an intersection from both techniques. A subset of genes was examined for confirmation by real-time polymerase chain reaction (PCR). Significant decreases were found in S mice for neurotensin and neuropeptide Y receptor Y2 (both confirmed by PCR). Significant increases were found in S mice for neuronal nitric oxide synthase (confirmed by PCR), the K+ channel subunit, Kcna1 (confirmed by PCR), corticotrophin releasing factor binding protein (just above significance using PCR; P= 0.051) and GABA A receptor subunit 1A (not confirmed by PCR, but similar direction). S mice also exhibited significantly higher levels of the neurotransmitter receptor, adenosine A1 receptor and the transcription factors, c-Fos, and Egr-1. Interestingly, for 24 genes related to metabolism, all were significantly elevated in S mice, suggesting altered metabolism in these mice. Together, this study provides a list of candidate genes (some previously implicated in maternal aggression and some novel) that may play an important role in the production of this behavior.


Subject(s)
Aggression/physiology , Central Nervous System/metabolism , Maternal Behavior/physiology , Nerve Tissue Proteins/metabolism , Selection, Genetic , Animals , Female , Gene Expression Profiling , Mice , Nerve Tissue Proteins/genetics , Protein Array Analysis , RNA/analysis
2.
Evolution ; 58(9): 2079-86, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15521463

ABSTRACT

The evolution of behavior has been notoriously difficult to study at the molecular level, but mouse genetic technology offers new promise. We applied selective breeding to increase voluntary wheel running in four replicate lines of Mus domesticus (S mice) while maintaining four additional lines through random breeding to serve as controls (C mice). The goal of the study was to identify the gene expression profile of the hippocampus that may have evolved to facilitate the increased voluntary running. The hippocampus was of interest because it is known to display marked physiological responses in association with wheel running itself. We used high-density oligonucleotide arrays representing 11,904 genes. To control for the confounding influence of physical activity itself on gene expression, animals were housed individually without access to running wheels, and were sampled during the day when they are normally inactive. Two-month-old female mice in estrus were used (n = 16 total; two per line; 8 S and 8 C). After correcting for an acceptable false discovery rate (10%), 30 genes, primarily involved in transcription and translation, significantly increased expression whereas 23 genes, distributed among many categories including immune function and neuronal signaling, decreased expression in S versus C mice. These changes were relatively small in magnitude relative to the changes in gene expression that occur in the hippocampus in response to wheel running itself. A priori tests of dopamine receptor expression levels demonstrated an increase of approximately 20% in the expression of D2 and D4 receptors. These results suggest that relatively small changes in the expression patterns of hippocampal genes underlie large changes in phenotypic response to selection, and that the genetic architecture of running motivation likely involves the dopaminergic system as well as CNS signaling machinery.


Subject(s)
Evolution, Molecular , Gene Expression , Hippocampus/metabolism , Locomotion/physiology , Mice/genetics , Selection, Genetic , Analysis of Variance , Animals , Body Weights and Measures , Female , Mice/metabolism , Mice/physiology , Oligonucleotide Array Sequence Analysis , RNA/genetics , Receptors, Dopamine/metabolism
3.
Circulation ; 103(5): 736-42, 2001 Feb 06.
Article in English | MEDLINE | ID: mdl-11156887

ABSTRACT

BACKGROUND: ACE inhibition after myocardial infarction (MI) has been shown to have beneficial effects on cardiac anatomy and function. The purpose of this study was to examine the effects of ACE inhibition on cardiac gene expression after MI. METHODS AND RESULTS: Rats were randomized to receive captopril or no treatment 1 day after MI. Eight weeks later, cardiac function and hemodynamics were measured by use of indwelling catheters and perivascular flow probes. Myocardial gene expression was assessed with DNA microarrays and real-time reverse transcription-polymerase chain reaction. The ratios of heart and left ventricular weights to body weight were significantly increased by MI and normalized by captopril. Cardiac index and stroke volume index were lower in the untreated MI group than in sham controls but were normal in the MI+captopril group. Thirty-seven genes were found to be differentially expressed between the untreated MI group and sham controls; 31 were induced and 6 repressed. Captopril partially or completely inhibited changes in 10 of the genes. The 37 genes clustered into 11 functional groups, and 6 had >/=1 genes whose expression was modified by ACE inhibition. CONCLUSIONS: ACE inhibition after MI inhibits cardiac hypertrophy, preserves cardiac function, and attenuates changes in myocardial gene expression. Gene expression profiling reveals, however, that some elements of the pathophysiology may be unaffected by the treatment and be targets for new therapies.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Captopril/pharmacology , Gene Expression/drug effects , Myocardial Infarction/genetics , Peptidyl-Dipeptidase A/metabolism , Acute Disease , Animals , Blood Pressure/drug effects , Body Weight , Disease Models, Animal , Heart/drug effects , Heart/physiology , Heart Function Tests , Heart Rate/drug effects , Male , Myocardial Infarction/enzymology , Organ Size/drug effects , Rats , Rats, Sprague-Dawley
4.
J Biol Chem ; 274(38): 27092-8, 1999 Sep 17.
Article in English | MEDLINE | ID: mdl-10480923

ABSTRACT

DNA target sites for a "multivalent" 11-zinc-finger CCTC-binding factor (CTCF) are unusually long ( approximately 50 base pairs) and remarkably different. In conjunction with the thyroid receptor (TR), CTCF binding to the lysozyme gene transcriptional silencer mediates the thyroid hormone response element (TRE)-dependent transcriptional repression. We tested whether other TREs, which in addition to the presence of a TR binding site require neighboring sequences for transcriptional function, might also contain a previously unrecognized binding site(s) for CTCF. One such candidate DNA region, previously isolated by Bigler and Eisenman (Bigler, J., and Eisenman, R. N. (1995) EMBO J. 14, 5710-5723), is the TRE-containing genomic element 144. We have identified a new CTCF target sequence that is adjacent to the TR binding site within the 144 fragment. Comparison of CTCF recognition nucleotides in the lysozyme silencer and in the 144 sequences revealed both similarities and differences. Several C-terminal CTCF zinc fingers contribute differently to binding each of these sequences. Mutations that eliminate CTCF binding impair 144-mediated negative transcriptional regulation. Thus, the 144 element provides an additional example of a functionally significant composite "TRE plus CTCF binding site" regulatory element suggesting an important role for CTCF in cooperation with the steroid/thyroid superfamily of nuclear receptors to mediate TRE-dependent transcriptional repression.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Repressor Proteins , Thyroid Hormones , Transcription Factors/metabolism , Transcription, Genetic , Zinc Fingers , Animals , Base Sequence , CCCTC-Binding Factor , Cell Line , DNA Methylation , Humans , Mice , Molecular Sequence Data , Rabbits , Sequence Alignment , Transfection
5.
Dev Biol ; 187(2): 283-97, 1997 Jul 15.
Article in English | MEDLINE | ID: mdl-9242424

ABSTRACT

The development of Drosophila midline glia during larval and pupal stages was characterized by localizing beta-gal expression in enhancer trap lines, as well as with BrdU incorporation and pulse-chase experiments. At hatching about 40 to 50 glial cells are present along the midline of the ventral nerve cord (2 to 3 dorsal and 1 to 2 ventral cells per neuromere). The cells proliferate during the third larval instar and spread dorsoventrally within the midline, increasing in number to about 230 or more (around 20 cells per neuromere). Cell divisions cease shortly after pupariation, and the cells persist for the first half of pupal life with no apparent changes in numbers or positions. Between 50 and 80% of metamorphosis, however, virtually all of the midline glia undergo programmed cell death. Tissue culture experiments indicate that the peak of ecdysteroids occurring at pupariation is required for the cessation of proliferation of midline glia and their subsequent degeneration. Midline glia in central nervous systems (CNS) cultured with low or no ecdysteroids survive and continue to divide, whereas they cease proliferating and later degenerate with high ecdysteroids levels. The midline glial may play a role during CNS metamorphosis similar to that of their progenitors in the embryo, in stabilizing outgrowing neurites that cross or run along the midline.


Subject(s)
Central Nervous System/growth & development , Drosophila/growth & development , Metamorphosis, Biological/physiology , Neuroglia/cytology , Animals , Apoptosis , Bromodeoxyuridine/metabolism , Cell Division , Ecdysteroids , Immunohistochemistry , Insect Hormones/metabolism , Larva/growth & development , Organ Culture Techniques , Pupa/growth & development , Steroids/metabolism
6.
Development ; 102(1): 223-35, 1988 Jan.
Article in English | MEDLINE | ID: mdl-3416772

ABSTRACT

The head of a hydra is composed of two parts, a domed hypostome with a mouth at the top and a ring of tentacles below. When animals are decapitated a new head regenerates. During the process of regeneration the apical tip passes through a transient stage in which it exhibits tentacle-like characteristics before becoming a hypostome. This was determined from markers which appeared before morphogenesis took place. The first was a monoclonal antibody, TS-19, that specifically binds to the ectodermal epithelial cells of the tentacles. The second was an antiserum against the peptide Arg-Phe-amide (RFamide), which in the head of hydra is specific to the sensory cells of the hypostomal apex and the ganglion cells of the lower hypostome and tentacles. The TS-19 expression and the ganglion cells with RFamide-like immunoreactivity (RLI) arose first at the apex and spread radially. Once the tentacles began evaginating in a ring, both the TS-19 antigen and RLI+ ganglion cells gradually disappeared from the presumptive hypostome area and RLI+ sensory cells appeared at the apex. By tracking tissue movements during morphogenesis it became clear that the apical cap, in which these changes took place, did not undergo tissue turnover. The implications of this tentacle-like stage for patterning the two-part head are discussed.


Subject(s)
Head/growth & development , Hydra/growth & development , Regeneration , Animals , Head/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...