Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng ; 7(4): 363-71, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11506726

ABSTRACT

This study tested the tissue engineering hypothesis that construction of an osteochondral composite graft could be accomplished using multipotent progenitor cells and phenotype-specific biomaterials. Rat bone marrow-derived mesenchymal stem cells (MSCs) were culture-expanded and separately stimulated with transforming growth factor-beta1 (TGF-beta1) for chondrogenic differentiation or with an osteogenic supplement (OS). MSCs exposed to TGF-beta1 were loaded into a sponge composed of a hyaluronan derivative (HYAF-11) for the construction of the cartilage component of the composite graft, and MSCs exposed to OS were loaded into a porous calcium phosphate ceramic component for bone formation. Cell-loaded HYAFF-11 sponge and ceramic were joined together with fibrin sealant, Tisseel, to form a composite osteochondral graft, which was then implanted into a subcutaneous pocket in syngeneic rats. Specimens were harvested at 3 and 6 weeks after implantation, examined with histology for morphologic features, and stained immunohistochemically for type I, II, and X collagen. The two-component composite graft remained as an integrated unit after in vivo implantation and histologic processing. Fibrocartilage was observed in the sponge, and bone was detected in the ceramic component. Observations with polarized light indicated continuity of collagen fibers between the ceramic and HYAFF-11 components in the 6-week specimens. Type I collagen was identified in the neo-tissue in both sponge and ceramic, and type II collagen in the fibrocartilage, especially the pericellular matrix of cells in the sponge. These data suggest that the construction of a tissue-engineered composite osteochondral graft is possible with MSCs and different biomaterials and bioactive factors that support either chondrogenic or osteogenic differentiation.


Subject(s)
Bioprosthesis , Bone Marrow Cells , Bone Remodeling , Stem Cells , Tissue Engineering/methods , Animals , Bone Substitutes , Cell Differentiation , Chondrocytes , Mesoderm , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...