Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(9): 7851-7865, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37517067

ABSTRACT

BACKGROUND: Asthma is a prolonged inflammatory disorder of the airways, that affects an estimated 300 million people worldwide. Asthma is triggered by numerous endogenous and exogenous stimuli with symptoms like wheezing, cough, short of breath, chest tightening, airway obstruction, and hyperreactivity observed in patients. OBJECTIVE: The review seeks to identify targets of redox imbalance and inflammation that could be explored to create effective treatments for asthma. METHODS: The methodology involved a search and review of literature relating to asthma pathogenesis, redox homeostasis, and inflammation. RESULTS:  Eosinophils and neutrophils are involved in asthma pathogenesis. These inflammatory cells generate high levels of endogenous oxidants such as hydrogen peroxide and superoxide, which could result in redox imbalance in the airways of asthmatics. Redox imbalance occurs when the antioxidant systems becomes overwhelmed resulting in oxidative stress. Oxidative stress and inflammation have been linked with asthma inflammation and severity. Reactive oxygen species (ROS)/reactive nitrogen species (RNS) cause lung inflammation by activating nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), activator protein-1, as well as additional transcription factors. These factors stimulate cytokine production which ultimately activates inflammatory cells in the bronchi, causing lung cellular injury and destruction. ROS/RNS is also produced by these inflammatory cells to eradicate invading bacteria. Antioxidant treatments for asthma have not yet been fully explored. CONCLUSION: Redox and inflammatory processes are viable targets that could be explored to create better therapy for asthma.


Subject(s)
Asthma , Lung Injury , Humans , Reactive Oxygen Species/metabolism , Antioxidants/therapeutic use , Antioxidants/metabolism , Asthma/metabolism , Oxidative Stress/physiology , Oxidation-Reduction , Inflammation/metabolism
3.
BMC Complement Med Ther ; 22(1): 227, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028848

ABSTRACT

BACKGROUND: Data available support that ninety percent of male infertility cases are due to low sperm counts. There is a scarcity of data on the medicinal effects of cannabis on fertility. This study evaluated testicular function and sperm quality modulation with cannabis in rats. METHODOLOGY: Twenty-five male Wistar rats were randomly grouped into five: A, B, C, and D, each group have 5 rats. A (control): 0.2 ml 2% DMSO, B (vitamin C): 90 mg/kg body weight, C, D, and E were administered: 5 mg/kg, 10 mg/kg and 20 mg/kg body weight of ethanolic leaf extract of cannabis (ELEC) respectively. The rats were sacrificed 24 h after the last day of the 60 day oral administrations. Flavonoids were the predominant phytochemical present in the extract while quercetin, kemferol, silyman and gallic acid were identified. RESULTS: The results showed a significant improvement (p < 0.05) in sperm quality and a significant increase in the concentrations of follicle-stimulating hormone, luteinizing hormone, triglycerides, cholesterol, and total protein determination compared to the normal control. Similarly, there was a significant increase (p < 0.05) in the activities of acid phosphatase, alkaline phosphatase, and superoxide dismutase compared to the normal control. RAC-alpha serine/threonine-protein kinase (AKT1)-silymarin complexes (-8.30 kcal/mol) and androgen receptor (AR)-quercetin complexes (9.20 kcal/mol) had the highest affinity. CONCLUSION: The antioxidant effects of the flavonoids in the ethanolic extract of cannabis may have protected testicular and sperm cells from oxidative damage. Biochemical processes and histopathological morphology were preserved by cannabis. The docking prediction suggests that the bioactive principle of cannabis may activate the androgenic receptors. The androgenic receptor modulation may be attributed to silymarin and quercetin.


Subject(s)
Cannabis , Silymarin , Animals , Body Weight , Male , Molecular Docking Simulation , Plant Extracts , Quercetin , Rats , Rats, Wistar , Seeds , Spermatozoa
4.
Yale J Biol Med ; 94(2): 199-207, 2021 06.
Article in English | MEDLINE | ID: mdl-34211341

ABSTRACT

The Trypanosoma spp. cause animal and human trypanosomiasis characterized with appreciable health and economic burden mostly in developing nations. There is currently no effective therapy for this parasitic disease, due to poor drug efficacy, drug resistance, and unwanted toxicity, etc. Therefore, new anti-Trypanosoma agents are urgently needed. This study explored new series of imidazoles for anti-Trypanosoma properties in vitro and in vivo. The imidazoles showed moderate to strong and specific action against growth of T. congolense. For example, the efficacy of the imidazole compounds to restrict Trypanosoma growth in vitro was ≥ 12-fold specific towards T. congolense relative to the mammalian cells. Additionally, the in vivo study revealed that the imidazoles exhibited promising anti-Trypanosoma efficacy corroborating the in vitro anti-parasite capacity. In particular, three imidazole compounds (C1, C6, and C8) not only cleared the systemic parasite burden but cured infected rats after no death was recorded. On the other hand, the remaining five imidazole compounds (C2, C3, C4, C5, and C7) drastically reduced the systemic parasite load while extending survival time of the infected rats by 14 days as compared with control. Untreated control died 3 days post-infection, while the rats treated with diminazene aceturate were cured comparable to the results obtained for C1, C6, and C8. In conclusion, this is the first study demonstrating the potential of these new series of imidazoles to clear the systemic parasite burden in infected rats. Furthermore, a high selectivity index of imidazoles towards T. congolensein vitro and the oral LD50 in rats support anti-parasite specific action. Together, findings support the anti-parasitic prospects of the new series of imidazole derivatives.


Subject(s)
Trypanosoma , Animals , Drug Resistance , Imidazoles/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...