Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; : e0021924, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904383

ABSTRACT

Acute encephalitis syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from an 8-year-old male patient with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2,211 nucleotides was sequenced, which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 cerebrospinal fluid (CSF) and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of seven of the positives were sequenced. These results identify a potential candidate etiologic agent of encephalitis in Nepal. IMPORTANCE: Viral encephalitis is a devastating disease, but unfortunately, worldwide, the causative virus in many cases is unknown. Therefore, it is important to identify viruses that could be responsible for cases of human encephalitis. Here, using metagenomic sequencing of CSF, we identified a gemykibivirus in a male child from Nepal with acute encephalitis syndrome (AES). We subsequently detected gemykibivirus DNA in CSF or serum of 12 more encephalitis patients by real-time PCR. The virus genomes we identified are highly similar to gemykibiviruses previously detected in CSF of three encephalitis patients from Sri Lanka. These results raise the possibility that gemykibivirus could be an underrecognized human pathogen.

2.
J Nepal Health Res Counc ; 21(4): 578-586, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38616586

ABSTRACT

BACKGROUND: The intestinal colonization and transmission of antibiotic-resistant Enterobacteriales to renal transplant recipients may pose a threat to them because they are profoundly immunocompromised and vulnerable to infection. Hence, it is crucial to identify these antibiotic-resistant fecal Enterobacteriales harboring high-risk populations. The objective of this study was to determine antibiotic resistance as well as ß-lactamases production in fecal Enterobacteriales among renal transplant recipients. METHODS: The stool samples, one collected from each transplant recipient, were processed for isolation and identification of Enterobacteriales and were tested for their antibiotic susceptibility, extended-spectrum ß-lactamase, and metallo-ß-lactamase production by standard methods. RESULTS: A total of 103 Enterobacteriales comprising of Escherichia coli (86.4%), Klebsiella species (11.7%), and Citrobacter species (1.9%) were isolated and more than 60% of the E. coli were found resistant to ceftazidime and ciprofloxacin and around half of the Klebsiella species were resistant to ceftazidime and fluroquinolones. The extended-spectrum ß-lactamase production was seen in 3.4% and 8.3% and metallo-ß-lactamase production in 24.7% and 33.3% of E. coli and Klebsiella species, respectively. The high proportion of ß-lactamase-producers were resistant to piperacillin-tazobactam, meropenem, gentamicin, and amikacin than ß-lactamases non-producers. CONCLUSION: Since the antibiotic resistance is higher in fecal Enterobacteriales, each renal transplant recipient should be screened for these highly resistant intestinal colonizers after transplantation in order to prevent infections and to reduce the rate of transplant failure due to infections.


Subject(s)
Anti-Bacterial Agents , Kidney Transplantation , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftazidime , Transplant Recipients , Escherichia coli , Nepal , beta-Lactamases , Klebsiella
3.
medRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405898

ABSTRACT

Acute Encephalitis Syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~ 5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from a male child with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2211 nucleotides was sequenced which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 CSF and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of 7 of the positives were sequenced. These results identify a candidate etiologic agent of encephalitis in Nepal.

4.
Infect Drug Resist ; 14: 1669-1677, 2021.
Article in English | MEDLINE | ID: mdl-33958879

ABSTRACT

PURPOSE: Inappropriate use of broad-spectrum antibiotics contributes to the emergence of multidrug-resistant (MDR) bacteria. Finding novel antimicrobial agents and strategies based on synergistic combinations are essential to combat MDR infections. This study was designed to determine in vitro synergy of different antimicrobials against extensively drug-resistant (XDR) Gram-negative clinical isolates. METHODS: A descriptive, cross-sectional study was conducted at Human Organ Transplant Center, Nepal, for five months. Clinical isolates were checked for their drug-resistance properties including extended-spectrum beta-lactamase- (ESBL-) and metallo-beta-lactamase- (MBL-) production. The XDR isolates were further tested for antimicrobial synergy, and the results were interpreted as synergistic, additive, indifferent or antagonistic determining fractional inhibitory concentration of the antibiotics. RESULTS: Out of total 1155 clinical samples, 308 showed significant growth. Escherichia coli was the most common isolate (n=142) followed by Klebsiella pneumoniae, Acinetobacter calcoaceticus baumannii (Acb) complex, Pseudomonas aeruginosa and miscellaneous bacteria. Out of the culture positive isolates, 21.4% were MDR and 10.06% were XDR. The XDR population comprised K. pneumoniae (18.42%), E. coli (9.86%), Acb complex (7.41%) and P. aeruginosa (4.17%). Among the culture positive isolates, 4.5% and 5.8% were ESBL- and MBL-producers, respectively. Colistin, polymyxin B, and tigecycline were the antibiotics effective in majority of MDR isolates as compared to carbapenems. The combination of antibiotics - meropenem and colistin showed the highest proportion of "synergy" among all XDR E. coli whereas the combination of amikacin and colistin showed synergistic effect in XDR K. pneumoniae. CONCLUSION: A significant proportion of isolates were MDR among which a large fraction was XDR. The combination of meropenem, amikacin and colistin with one another in pair showed beneficial activity in vitro. Such combinations can be utilized as effective therapy for XDR infections. Further studies are required to confirm these findings, and accordingly treatment protocols should be developed in the management of such infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...