Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Radiol Phys Technol ; 15(4): 417-423, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36076142

ABSTRACT

This study explored the detectability of category 3 or higher microcalcifications using 5-MP color and monochrome monitors. Contrast detail mammography phantom with polymethyl methacrylate (PMMA) images were observed in color and monochrome by five radiographers, and the image quality figures (IQF) were calculated based on the gold disc locations identified. Five radiographers and two radiologists observed 200 mammograms from 100 patients (including 36 with microcalcifications) and rated the microcalcifications. The results were analyzed using area under the curve (AUC) and jackknife resampling. A paired t test was used for statistical analysis (p < 0.05). The mean IQF of color and monochrome monitors were 10.73 and 10.49 (30 mm PMMA, p = 0.653) and 8.47 and 8.74 (50 mm PMMA, p = 0.774), respectively. The mean AUC of color and monochrome monitors were 0.917 and 0.936 (p = 0.335), respectively, with windowing and magnification. The detectability of microcalcifications was not significantly different between the monitors.


Subject(s)
Calcinosis , Liquid Crystals , Humans , Polymethyl Methacrylate , Mammography/methods , Calcinosis/diagnostic imaging , Phantoms, Imaging , Radiographic Image Enhancement/methods
2.
J Nucl Med Technol ; 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35440474

ABSTRACT

This study investigated the spatial resolution and image quality of the continuous bed motion (CBM) method in a sensitive silicon photomultiplier (SiPM)-based positron emission tomography (PET)/computed tomography (CT) system compared with the traditional step-and-shoot (SS) method. Methods: Siemens Biograph Vision was used in this study. Data acquisition using the SS method was performed for 3 min per bed. In the CBM method, the bed speed ranged from 0.5 to 3.3 mm/s. The acquisition time equivalent to the SS method was 1.1 mm/s for 2-bed ranges and 0.8 mm/s for seven-bed ranges. The spatial resolution was investigated using 18F point sources and evaluated using the full width at half maximum. Image quality was investigated using a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with six spheres 10-, 13-, 17-, 22-, 28-, and 37-mm inner diameters. The radioactivity concentration ratio of the 18F solution in all spheres and the background was approximately 4:1. The detectability of each sphere was visually evaluated on a five-step score. Image quality was physically evaluated using the noise equivalent count rate (NECphantom), contrast percentage of the 10-mm hot sphere (QH,10mm), background variability percentage (N10mm), and contrast-noise ratio (QH,10mm/N10mm). Results: The spatial resolution was not affected by the difference of acquisition methods and bed speeds. The detectability of the 10-mm sphere with a bed speed of 2.2 mm/s or faster was significantly inferior to that of the SS 2-bed method. In evaluating image quality, no significant difference in the contrast percentage was observed among the acquisition methods and speeds in the CBM method. However, the increasing bed speed in the CBM method increased the N10mm and decreased the NECphantom. When comparing the SS 2-bed method with the CBM method at 0.8 mm/s, no significant differences in all parameters were observed. Conclusion: In a SiPM-based PET/CT scanner, the CBM method provides equivalent spatial resolution and image quality in whole body PET images with same acquisition time using the SS method.

3.
Ann Nucl Med ; 34(10): 725-735, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32621167

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the image quality and the quantification accuracy of Biograph Vision PET/CT scanner as a SiPM-PET in comparison to the conventional PMT-PET, Biograph mCT PET/CT scanner. METHODS: This study consisted of a phantom study and a retrospective clinical analysis where patients underwent 18F-FDG PET/CT in both PET systems. The body phantom of the NEMA IEC with 10-37 mm diameter spheres were filled with an 18F-FDG solution. The root mean square error (RMSE) of SUV, the detectability of 10-mm sphere, NECphantom, the background variability (N10mm) and the contrast-noise-ratio (QH,10 mm/N10mm) were calculated based on the phantom analysis. We also examined the quality of the acquired clinical images using the NECpatient, NECdensity, SNRliver, SUVliver and SUVlesion. RESULTS: In the phantom study on Vision scanner, RMSE was relatively lower when the iteration number was 2, 3 or 4. To satisfy a visual score of 1.5 and the reference range of QH,10 mm/N10mm, a 60-s or longer acquisition was required. Our clinical findings show that NECpatient averaged 17.4 ± 1.72 Mcounts/m in mCT and 29.1 ± 2.83 Mcounts/m in Vision. Furthermore, NECdensity averaged 0.29 ± 0.05 kcounts/cm3 in mCT and 0.53 ± 0.09 kcounts/cm3 in Vision, respectively, whereas SNRliver averaged 14.6 ± 3.77% in mCT and 21.3 ± 1.69% in Vision (P = 0.0156), respectively. Finally, SUVliver averaged 2.82 ± 0.28 and 2.55 ± 0.30, SUVlesion ranged 1.6-17.6 and 1.9-22.9 in mCT and Vision, respectively. CONCLUSION: SiPM-PET/CT provides superior image quality and quantification accuracy compared to PMT-PET/CT.


Subject(s)
Phantoms, Imaging , Positron Emission Tomography Computed Tomography/instrumentation , Adult , Female , Fluorodeoxyglucose F18 , Humans , Image Processing, Computer-Assisted , Male , Quality Control , Retrospective Studies , Sensitivity and Specificity
4.
Article in Japanese | MEDLINE | ID: mdl-32435033

ABSTRACT

Three dimensional ordered subset expectation maximization (3D-OSEM) improves spatial resolution and contrast. Continuous acquisition, and step and shoot acquisition are used in single photon emission computed tomography (SPECT). The purpose of this study was to evaluate the effect of 3D-OSEM when acquisition method was different. We evaluated spatial resolution using a line source phantom and uniformity using a pool phantom. The phantoms were acquired by step and shoot acquisition and continuous acquisition at changing step angles. These projection data were reconstructed using filtered back projection (FBP) and 3D-OSEM. We evaluated reconstruction images using the full width half maximum (FWHM) of line source and root mean square uncertainty (%RMSU) of pool phantom. 3D-OSEM improved spatial resolution and uniformity compared with FBP. Change of FWHM in radial direction and %RMSU by using 3D-OSEM was approximately equal to continuous acquisition in step and shoot acquisition. However, even if using 3D-OSEM, distance between center of rotation and the location of line source is long, a large sampling step angle produced an increase FWHM in tangential direction using continuous acquisition. Step angles need to be set based on the sampling theorem using continuous acquisition.


Subject(s)
Imaging, Three-Dimensional , Motivation , Algorithms , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon
5.
Asia Ocean J Nucl Med Biol ; 6(1): 15-23, 2018.
Article in English | MEDLINE | ID: mdl-29333463

ABSTRACT

OBJECTIVES: The aim of this study is to examine the effect of different smoothing filters on the image quality and SUVmax to achieve the guideline recommended positron emission tomography (PET) image without harmonization. METHODS: We used a Biograph mCT PET scanner. A National Electrical Manufacturers Association (NEMA) the International Electrotechnical Commission (IEC) body phantom was filled with 18F solution with a background activity of 2.65 kBq/mL and a sphere-to-background ratio of 4. PET images obtained with the Biograph mCT PET scanner were reconstructed using the ordered subsets-expectation maximization (OSEM) algorithm with time-of-flight (TOF) models (iteration, 2; subset, 21); smoothing filters including the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters with various full width at half maximum (FWHM) values (1-15 mm) were applied. The image quality was physically assessed according to the percent contrast (QH,10), background variability (N10), standardized uptake value (SUV), and recovery coefficient (RC). The results were compared with the guideline recommended range proposed by the Japanese Society of Nuclear Medicine and the Japanese Society of Nuclear Medicine Technology. The PET digital phantom was developed from the digital reference object (DRO) of the NEMA IEC body phantom smoothed using a Gaussian filter with a 10-mm FWHM and defined as the reference image. The difference in the SUV between the PET image and the reference image was evaluated according to the root mean squared error (RMSE). RESULTS: The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that satisfied the image quality of the FDG-PET/CT standardization guideline criteria were 8-12 mm, 9-11 mm, 9-13 mm, 10-13 mm, 9-11 mm, and 12-15 mm, respectively. The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that provided the smallest RMSE between the PET images and the 3D digital phantom were 7 mm, 8 mm, 8 mm, 8 mm, 7 mm, and 11 mm, respectively. CONCLUSION: The suitable FWHM for image quality or SUVmax depends on the type of smoothing filter that is applied.

6.
Asia Ocean J Nucl Med Biol ; 5(2): 134-143, 2017.
Article in English | MEDLINE | ID: mdl-28660224

ABSTRACT

OBJECTIVES: We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF)-based positron emission tomography (PET) image reconstruction. METHODS: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL) for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM) algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM) of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax) and the mean recovery coefficient (RCmean) in the phantom at different diameters. RESULTS: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2). The RCmean of the OSEM with PSF images did not exceed 100%. CONCLUSION: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.

7.
Radiol Phys Technol ; 10(3): 382-386, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28466128

ABSTRACT

The objective of this work was to evaluate the maximum luminance (L max) level of medical liquid crystal displays (LCDs) as a function of backlight hours (BLH) annually. The L max values for 249 2-megapixel color LCDs (RadiForce RX210, EIZO Corporation) were measured in February 2014, 2015, and 2016. Four near-range luminance meters and the built-in type luminance meters, each with an LCD, were used for the measurements. The average and standard deviation (SD) of BLH measured in 2014 was 15,371 ± 8219 h. Four, twenty, and thirty-nine LCDs failed in the constancy tests performed in February 2014, 2015, and 2016, respectively, i.e., they were unable to output 170 cd/m2. The SD of L max increased each year and as BLH became longer. In conclusion, evaluation of L max as a function of BLH during constancy testing will help predict the decrease in L max of a clinically used medical color LCD.


Subject(s)
Lighting/instrumentation , Liquid Crystals , Color , Humans
8.
Radiol Phys Technol ; 10(1): 121-128, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27531215

ABSTRACT

In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.


Subject(s)
Fluorodeoxyglucose F18 , Monte Carlo Method , Radiation Dosage , Fluorodeoxyglucose F18/administration & dosage , Phantoms, Imaging , Positron-Emission Tomography , Radiation Protection
9.
Radiol Phys Technol ; 5(1): 53-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22002584

ABSTRACT

Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.


Subject(s)
Radiation Dosage , Tomography, X-Ray Computed/methods , Algorithms , Tomography, X-Ray Computed/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...