Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(12)2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32575860

ABSTRACT

The MeOH/CH2Cl2 (1:1) extracts of the roots and leaves of Beilschmiedia louisii and B. obscura showed potent antitrypanosomal activity during preliminary screening on Trypanosoma brucei brucei. Phytochemical investigation of these extracts led to the isolation of a mixture of two new endiandric acid derivatives beilschmiedol B (1) and beilschmiedol C (2), and one new phenylalkene obscurene A (3) together with twelve known compounds (4-15). In addition, four new derivatives (11a-11d) were synthesized from compound 11. Their structures were elucidated based on their NMR and MS data. Compounds 5, 6, and 7 were isolated for the first time from the Beilschmiedia genus. Additionally, the NMR data of compound 4 are given here for the first time. The isolates were evaluated for their antitrypanosomal and antimalarial activities against Tb brucei and the Plasmodium falciparum chloroquine-resistant strain Pf3D7 in vitro, respectively. From the tested compounds, the mixture of new compounds 1 and 2 exhibited the most potent antitrypanosomal activity in vitro with IC50 value of 4.91 µM.


Subject(s)
Anti-Infective Agents/analysis , Antimalarials/pharmacology , Antiparasitic Agents/pharmacology , Carboxylic Acids/chemistry , Lauraceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cell Survival/drug effects , Chloroquine/pharmacology , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Plant Leaves/chemistry , Plant Roots/chemistry , Plasmodium falciparum/drug effects , Trypanosoma brucei brucei/drug effects
2.
J Fungi (Basel) ; 4(2)2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29895768

ABSTRACT

There is continuing need for new and improved drugs to tackle malaria, which remains a major public health problem, especially in tropical and subtropical regions of the world. Natural products represent credible sources of new antiplasmodial agents for antimalarial drug development. Endophytes that widely colonize healthy tissues of plants have been shown to synthesize a great variety of secondary metabolites that might possess antiplasmodial benefits. The present study was carried out to evaluate the antiplasmodial potential of extracts from endophytic fungi isolated from Symphonia globulifera against a chloroquine-resistant strain of Plasmodium falciparum (PfINDO). Sixty-one fungal isolates with infection frequency of 67.77% were obtained from the bark of S. globulifera. Twelve selected isolates were classified into six different genera including Fusarium, Paecilomyces, Penicillium, Aspergillus, Mucor, and Bipolaris. Extracts from the 12 isolates were tested against PfINDO, and nine showed good activity (IC50 < 10 μg·mL−1) with three fungi including Paecilomyces lilacinus (IC50 = 0.44 μg·mL−1), Penicillium janthinellum (IC50 = 0.2 μg·mL−1), and Paecilomyces sp. (IC50 = 0.55 μg·mL−1) showing the highest promise. These three isolates were found to be less cytotoxic against the HEK293T cell line with selectivity indices ranging from 24.52 to 70.56. Results from this study indicate that endophytic fungi from Symphonia globulifera are promising sources of hit compounds that might be further investigated as novel drugs against malaria. The chemical investigation of active extracts is ongoing.

SELECTION OF CITATIONS
SEARCH DETAIL
...