Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(4): e202302824, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37903027

ABSTRACT

The participation of both ligand and the metal center in the redox events has been recognized as one of the ways to attain the formal high valent complexes for the late 3d metals, such as Ni and Cu. Such an approach has been employed successfully to stabilize a Ni(III) bisphenoxyl diradical species in which there exist an equilibrium between the ligand and the Ni localized resultant spin. The present work, however, broadens the scope of the previously reported three oxidized equivalent species by conveying the approaches that tend to affect the reported equilibrium in CH3 CN at 233 K. Various spectroscopic characterization revealed that employing exogenous N-donor ligands like 1-methyl imidazole and pyridine favors the formation of the Ni centered localized spin though axial binding. In contrast, due to its steric hinderance, quinoline favors an exclusive ligand localized radical species. DFT studies shed light on the novel intermediates' complex electronic structure. Further, the three oxidized equivalent species with the Ni centered spin was examined for its hydrogen atom abstraction ability stressing their key role in alike reactions.

2.
Angew Chem Int Ed Engl ; 63(3): e202316378, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37997195

ABSTRACT

Lewis acid-bound high valent Mn-oxo species are of great importance due to their relevance to photosystem II. Here, we report the synthesis of a unique [(BnTPEN)Mn(III)-O-Ce(IV)(NO3 )4 ]+ adduct (2) by the reaction of (BnTPEN)Mn(II) (1) with 4 eq. ceric ammonium nitrate. 2 has been characterized using UV/Vis, NMR, resonance Raman spectroscopy, as well as by mass spectrometry. Treatment of 2 with Sc(III)(OTf)3 results in the formation of (BnTPEN)Mn(IV)-O-Sc(III) (3), while HClO4 addition to 2 forms (BnTPEN)Mn(IV)-OH (4), reverting to 2 upon Ce(III)(NO3 )3 addition. 2 can also be prepared by the oxidation of 1 eq. Ce(III)(NO3 )3 with [(BnTPEN)Mn(IV)=O]2+ (5). In addition, the EPR spectroscopy revealed the elegant temperature-dependent equilibria between 2 and Mn(IV) species. The binding of redox-active Ce(IV) boosts electron transfer efficiency of 2 towards ferrocenes. Remarkably, the newly characterized Mn(III)-O-Ce(IV) species can carry out O-atom and H-atom transfer reactions.

3.
Dalton Trans ; 52(35): 12552-12559, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37609762

ABSTRACT

The reaction of [(Me/BnTPEN)RuII(NCCH3)]2+ (BnTPEN = N1-benzyl-N1,N2,N2-tris(pyridine-2-ylmethyl)ethane-1,2-diamine and MeTPEN = N1-methyl-N1,N2,N2-tris(pyridine-2-ylmethyl)ethane-1,2-diamine) with mCPBA in the presence of chloride ions in CH3CN : H2O generated a novel (Me/BnTPEN)RuIII-OCl species at room temperature. This hypochlorite adduct could also be obtained by the direct reaction of NaOCl and HClO4 with (L)RuII complexes. The current study mimics the synthesis of a metal hypochlorite adduct in a similar fashion as in the heme-dependent haloperoxidase enzyme. As an electrophilic oxidant, the ruthenium hypochlorite adduct catalyzes hydrogen atom abstraction reactions of phenols and their derivatives.

4.
Chemistry ; 29(53): e202301506, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37415318

ABSTRACT

The reaction of [(L)MnII ]2+ (L = neutral polypyridine ligand framework) in the presence of mCPBA (mCPBA = m-Chloroperoxybenzoic acid) generates a putative MnV =O species at RT. The proposed MnV =O species is capable of performing the aromatic hydroxylation of Cl-benzoic acid derived from mCPBA to give [(L)MnIII (m-Cl-salicylate)]+ , which in the presence of excess mCPBA generates a metastable [(L)MnV (O)(m-Cl-salicylate)]+ , characterized by UV/Vis absorption, EPR, resonance Raman spectroscopy, and ESI-MS studies. The current study highlights the fact that [(L)MnIII (m-Cl-salicylate)]+ formation may not be a dead end for catalysis. Further, a plausible mechanism has been proposed for the formation of [(L)MnV (O)-m-Cl-salicylate)]+ from [(L)MnIII (m-Cl-salicylate)]+ . The characterized transient [(L)MnV (O)-m-Cl-salicylate)]+ reported in the current work exhibits high reactivity for oxygen atom transfer reactions, supported by the electrophilic character depicted from Hammett studies using a series of para-substituted thioanisoles. The unprecedented study starting from a non-heme neutral polypyridine ligand framework paves a path for mimicking the natural active site of photosystem II under ambient conditions. Finally, evaluating the intracellular effect of Mn(II) complexes revealed an enhanced intracellular ROS and mitochondrial dysfunction to prevent the proliferation of hepatocellular carcinoma and breast cancer cells.


Subject(s)
Manganese , Neoplasms , Manganese/chemistry , Ligands , Chlorobenzoates
5.
Dalton Trans ; 52(25): 8645-8653, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37294205

ABSTRACT

Inspired by copper-based metalloenzymes, we aim to incorporate amino acids into our ligands to facilitate active copper intermediates that serve as functional and structural models for these enzymes. Herein, we report the synthesis of a Cu(II) complex with a C2 symmetric proline-based pseudopeptide LH2 (N,N'-(ethane-1,2-diyl)bis(pyrrolidine-2-carboxamide)), which is capable of supporting an [(L)Cu(III)]+ (3) intermediate in MeOH : CH3CN (1 : 20) at -30 °C. From comparative studies with the pyridine analog Cu(II) complex, it was demonstrated that the incorporation of amino acid in the ligand framework decreased the Cu(III)/Cu(II) redox potential significantly to react readily with mCPBA and CAN. The newly generated [(L)Cu(III)]+ can promote hydrogen atom abstraction reactions with phenolic substrates.

6.
Angew Chem Int Ed Engl ; 61(41): e202211345, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35978531

ABSTRACT

Cytochrome P450s and Galactose Oxidases exploit redox active ligands to form reactive high valent intermediates for oxidation reactions. This strategy works well for the late 3d metals where accessing high valent states is rather challenging. Herein, we report the oxidation of NiII (salen) (salen=N,N'-bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with mCPBA (meta-chloroperoxybenzoic acid) to form a fleeting NiIII bisphenoxyl diradical species, in CH3 CN and CH2 Cl2 at -40 °C. Electrochemical and spectroscopic analyses using UV/Vis, EPR, and resonance Raman spectroscopies revealed oxidation events both on the ligand and the metal centre to yield a NiIII bisphenoxyl diradical species. DFT calculations found the electronic structure of the ligand and the d-configuration of the metal center to be consistent with a NiIII bisphenoxyl diradical species. This three electron oxidized species can perform hydrogen atom abstraction and oxygen atom transfer reactions.


Subject(s)
Galactose , Nickel , Chlorobenzoates , Cyclohexanes , Cytochromes , Diamines , Ethylenediamines , Galactose Oxidase , Hydrogen , Ligands , Metals , Nickel/chemistry , Oxidation-Reduction , Oxygen
7.
Dalton Trans ; 51(34): 12848-12854, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35968730

ABSTRACT

Haloperoxidase enzymes utilize metal hypohalite species to halogenate aliphatic and aromatic C-H bonds to C-X (X = Cl, Br, I) in nature. In this work, we report the synthesis and spectroscopic characterization of a unique RuIII-OCl species as a structural mimic of haloperoxidase enzymes. The reaction of [(BnTPEN)RuII(NCCH3)]2+ (BnTPEN = N1-benzyl-N1,N2,N2-tris(pyridine-2-ylmethyl)ethane-1,2-diamine) with hypochlorite in the presence of an acid in CH3CN : H2O mixtures generated a novel [(BnTPEN)RuIII-OCl]2+ species that persists for 4.5 h at room temperature. This new species was characterized by UV-vis absorption, EPR, and resonance Raman spectroscopic techniques, and ESI-MS. The RuIII-OCl species is capable of performing oxygen atom transfer and hydrogen atom abstraction to various organic substrates.


Subject(s)
Metals , Oxygen , Hypochlorous Acid , Oxygen/chemistry , Spectrum Analysis
8.
Bioresour Technol ; 285: 121308, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30959390

ABSTRACT

In the present work, the pyrolysis of para grass (PG) and phumdi (PH) biomass samples was conducted in the temperature range of 300-500 °C to obtain the optimum temperature for obtaining the maximum yield of bio-oil. Further, co-pyrolysis experiments of PH and PG were also conducted at the same optimized temperature and varied compositions to investigate the synergistic effect. It was observed during the co-pyrolysis, that the maximum bio-oil yield of 37.80 wt% was obtained at the mass ratio of 1:1. The GC-MS, FT-IR and 1H NMR analysis revealed that the bio-oils produced from all the processes were rich in functionalities. Phenolic compounds such as 2-methoxy-4-vinyl phenol, phenol, 2-methoxy, phenol 4-ethyl constituted a significant portion of bio-oils. The biochars obtained at the optimum pyrolytic conditions were analyzed by FT-IR and TOC analyzer.


Subject(s)
Biofuels , Lakes , Biomass , Hot Temperature , Poaceae , Pyrolysis , Spectroscopy, Fourier Transform Infrared
9.
Bioresour Technol ; 274: 173-179, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30504100

ABSTRACT

The present study illustrates the production of phenolic compounds via slow pyrolysis of coir pith biomass in a bench-scale reactor. The primary objective of the study is to optimize the pyrolysis conditions to maximize the yield of bio-oil and phenolic compounds. Up to 88.14% phenolic compounds were obtained in the organic fraction of the bio-oil obtained at 350 °C. The phenolic compounds thus extracted can be used for the production of phenol-formaldehyde resins, which reduces the dependence on petroleum-based phenols for the manufacturing of resin. An independent kinetic analysis of the apparent pyrolysis reaction was also performed using thermogravimetry and isoconversional methodology. The calculated values of activation energy showed a variation from 28.41 to 200.09 kJ/mol, with the mean value being 140 kJ/mol. The thermodynamic parameters (ΔS, ΔH, and ΔG) were subsequently evaluated at different conversions using the activation energy values obtained from the kinetic analysis.


Subject(s)
Lignin/analogs & derivatives , Phenols/chemistry , Thermodynamics , Biomass , Kinetics , Lignin/chemistry , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...