Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Atten Percept Psychophys ; 84(1): 150-160, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34668174

ABSTRACT

This study used high-frequency transcranial random noise stimulation (tRNS) to examine how low and high spatial frequency filtered faces are processed. Response times were measured in a task where healthy young adults categorised spatially filtered hybrid faces, presented at foveal and peripheral blocks, while sham and high-frequency random noise was applied to a lateral occipito-temporal location on their scalp. Both the Frequentist and Bayesian approaches show that in contrast to sham, active stimulation significantly reduced response times to peripherally presented low spatial frequency information. This finding points to a possible plasticity in targeted regions induced by non-invasive neuromodulation of spatial frequency information in rapid perception of faces.


Subject(s)
Transcranial Direct Current Stimulation , Bayes Theorem , Humans , Perception , Reaction Time , Young Adult
2.
Hum Mov Sci ; 80: 102879, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607165

ABSTRACT

Hand-held pendulums can seemingly oscillate on their own, without perceived conscious control. This illusion, named after Chevreul, is likely a result of ideomotor movements. While this phenomenon was originally assumed to have a supernatural basis, it has been accepted for over 150 years that the movements are self-generated. However, until now, recordings of the small movements that create these oscillations have not been performed. In this study, we examined how participants produce these unconscious oscillations using a motion capture system. As expected, the Chevreul pendulum illusion was produced when the fingers holding the pendulum generated an oscillating frequency close to the resonant frequency of the pendulum, where very small driving movements of the arm are sufficient to produce relatively large pendulum motion. We found that pendulum length significantly affected the ability to produce the illusion - participants were much more successful with a 40 cm compared to an 80 cm pendulum. Further, we found that participants that tended to move their fingers more were more successful in producing the illusion but did not find a connection between inter-joint coordination and ability to generate the illusion.


Subject(s)
Illusions , Motion Perception , Fingers , Humans , Imagination , Movement
3.
Front Psychol ; 10: 2206, 2019.
Article in English | MEDLINE | ID: mdl-31636579

ABSTRACT

[This corrects the article DOI: 10.3389/fpsyg.2013.00806.].

4.
Front Psychol ; 8: 338, 2017.
Article in English | MEDLINE | ID: mdl-28344565

ABSTRACT

In the context of objectification and violence, little attention has been paid to the perception neuroscience of how the human brain perceives bodies and objectifies them. Various studies point to how external cues such as appearance and attire could play a key role in encouraging objectification, dehumanization and the denial of agency. Reviewing new experimental findings across several areas of research, it seems that common threads run through issues of clothing, sexual objectification, body perception, dehumanization, and assault. Collating findings from several different lines of research, this article reviews additional evidence from cognitive and neural dynamics of person perception (body and face perception processes) that predict downstream social behavior. Specifically, new findings demonstrate cognitive processing of sexualized female bodies as object-like, a crucial aspect of dehumanized percept devoid of agency and personhood. Sexual violence is a consequence of a dehumanized perception of female bodies that aggressors acquire through their exposure and interpretation of objectified body images. Integrating these findings and identifying triggers for sexual violence may help develop remedial measures and inform law enforcement processes and policy makers alike.

5.
eNeuro ; 4(6)2017.
Article in English | MEDLINE | ID: mdl-29379865

ABSTRACT

In this study, we investigated the effect of transcranial alternating current stimulation (tACS) on voluntary risky decision making and executive control in humans. Stimulation was delivered online at 5 Hz (θ), 10 Hz (α), 20 Hz (ß), and 40 Hz (γ) on the left and right frontal area while participants performed a modified risky decision-making task. This task allowed participants to voluntarily select between risky and certain decisions associated with potential gains or losses, while simultaneously measuring the cognitive control component (voluntary switching) of decision making. The purpose of this experimental design was to test whether voluntary risky decision making and executive control can be modulated with tACS in a frequency-specific manner. Our results revealed a robust effect of a 20-Hz stimulation over the left prefrontal area that significantly increased voluntary risky decision making, which may suggest a possible link between risky decision making and reward processing, underlined by ß-oscillatory activity.


Subject(s)
Decision Making/physiology , Prefrontal Cortex/physiology , Risk-Taking , Transcranial Direct Current Stimulation , Adolescent , Adult , Executive Function/physiology , Female , Humans , Male , Transcranial Direct Current Stimulation/methods , Young Adult
6.
PeerJ ; 4: e1617, 2016.
Article in English | MEDLINE | ID: mdl-26925312

ABSTRACT

This study examines the role of the magnocellular system in the early stages of face perception, in particular sex categorization. Utilizing the specific property of magnocellular suppression in red light, we investigated visually guided reaching to low and high spatial frequency hybrid faces against red and grey backgrounds. The arm movement curvature measure shows that reduced response of the magnocellular pathway interferes with the low spatial frequency component of face perception. This finding provides behavioral evidence for magnocellular contribution to non-emotional aspect of face perception.

7.
Front Psychol ; 4: 806, 2013.
Article in English | MEDLINE | ID: mdl-24312060

ABSTRACT

One of the well-documented concerns confronting scholarly discourse about meditation is the plethora of semantic constructs and the lack of a unified definition and taxonomy. In recent years there have been several notable attempts to formulate new lexicons in order to define and categorize meditation methods. While these constructs have been useful and have encountered varying degrees of acceptance, they have also been subject to misinterpretation and debate, leaving the field devoid of a consensual paradigm. This paper attempts to influence this ongoing discussion by proposing two new models which hold the potential for enhanced scientific reliability and acceptance. Regarding the quest for a universally acceptable taxonomy, we suggest a paradigm shift away from the norm of fabricatIng new terminology from a first-person perspective. As an alternative, we propose a new taxonomic system based on the historically well-established and commonly accepted third-person paradigm of Affect and Cognition, borrowed, in part, from the psychological and cognitive sciences. With regard to the elusive definitional problem, we propose a model of meditation which clearly distinguishes "method" from "state" and is conceptualized as a dynamic process which is inclusive of six related but distinct stages. The overall goal is to provide researchers with a reliable nomenclature with which to categorize and classify diverse meditation methods, and a conceptual framework which can provide direction for their research and a theoretical basis for their findings.

8.
Front Hum Neurosci ; 7: 91, 2013.
Article in English | MEDLINE | ID: mdl-23519842

ABSTRACT

Research exploring the role of spatial frequencies in rapid stimulus detection and categorization report flexible reliance on specific spatial frequency (SF) bands. Here, through a set of behavioral and magnetoencephalography (MEG) experiments, we investigated the role of low spatial frequency (LSF) (<8 cycles/face) and high spatial frequency (HSF) (>25 cycles/face) information during the categorization of faces and places. Reaction time measures revealed significantly faster categorization of faces driven by LSF information, while rapid categorization of places was facilitated by HSF information. The MEG study showed significantly earlier latency of the M170 component for LSF faces compared to HSF faces. Moreover, the M170 amplitude was larger for LSF faces than for LSF places, whereas the reverse pattern was evident for HSF faces and places. These results suggest that SF modulates the processing of category specific information for faces and places.

9.
Front Psychol ; 3: 613, 2012.
Article in English | MEDLINE | ID: mdl-23335908

ABSTRACT

Despite the growing interest in the neurobiological correlates of meditation, most research has omitted to take into account the underlying philosophical aspects of meditation and its wider implications. This, in turn, is reflected in issues surrounding definition, study design, and outcomes. Here, I highlight the often ignored but important aspect of definition in the existing scholarship on neuroscience and meditation practice. For a satisfactory account of a neuroscience of meditation, we must aim to retrieve an operational definition that is inclusive of a traditional ontological description as well as the modern neurocognitive account of the phenomena. Moving beyond examining the effects of meditation practice, to take a potential step forward in the direction to establish how meditation works, it becomes crucial to appraise the philosophical positions that underlie the phenomenology of meditation in the originating traditions. This endeavor may challenge our intuitions and concepts in either directions, but issues pertaining to definition, design, and validity of response measures are extremely important for the evolution of the field and will provide a much-needed context and framework for meditation based interventions.

10.
Cogn Neurosci ; 3(2): 120-30, 2012.
Article in English | MEDLINE | ID: mdl-24168693

ABSTRACT

Developmental prosopagnosia (DP) is characterized by a selective deficit in face recognition despite normal cognitive and neurological functioning. Previous research has established configural processing deficits in DP subjects. Low spatial frequency (LSF) information subserves configural face processing. Using hybrid stimuli, here we examined the evolution of perceptual dynamics and integration of LSF information by DP subjects while they pointed to high spatial frequency (HSF) face targets. Permutation analysis revealed a 230-ms delay in LSF processing by DP subjects as compared to controls. This delayed processing is likely to contribute to the difficulties associated with face recognition in DP subjects and is reflective of their alleged reliance on local rather than global features in face perception. These results suggest that quick and efficient processing of LSF information is critical for the development of normal face perception.

11.
Neuropsychologia ; 49(13): 3583-90, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21939676

ABSTRACT

Distinct visual pathways are selectively tuned for processing specific spatial frequencies. Recently, Awasthi, Friedman, and Williams (2011) reported fast categorisation of faces at periphery, arguing for primacy of low spatial frequency (LSF) information in face processing. However, previous studies have also documented rapid categorization of places and natural scenes. Here, we tested if the LSF advantage is face specific or also involved in place perception. We used visually guided reaching as a continuous behavioral measure to examine the processing of LSF and high spatial frequency (HSF) hybrids, presented at the periphery. Subjects reached out and touched targets and their movements were recorded. The trajectories revealed that LSF interference was both 95 ms earlier and stronger for faces than places and was lateralized to the left visual field. The early processing of LSF information supports the assumption that faces are prioritised and provides a (neural) framework for such specialised processing.


Subject(s)
Brain Mapping , Face , Functional Laterality/physiology , Pattern Recognition, Visual/physiology , Space Perception/physiology , Visual Fields/physiology , Adult , Analysis of Variance , Female , Humans , Male , Photic Stimulation , Psychophysics , Reaction Time/physiology , Time Factors , Visual Pathways/physiology , Young Adult
12.
Neuropsychologia ; 49(7): 2136-41, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21397615

ABSTRACT

Various aspects of face processing have been associated with distinct ranges of spatial frequencies. Configural processing of faces depends chiefly on low spatial frequency (LSF) information whereas high spatial frequency (HSF) supports feature based processing. However, it has also been argued that face processing has a foveal-bias (HSF channels dominate the fovea). Here we used reach trajectories as a continuous behavioral measure to study perceptual processing of faces. Experimental stimuli were LSF-HSF hybrids of male and female faces superimposed and were presented peripherally and centrally. Subject reached out to touch a specified sex and their movements were recorded. The reaching trajectories reveal that there is less effect of (interference by) LSF faces at fovea as compared to periphery while reaching to HSF targets. These results demonstrate that peripherally presented LSF information, carried chiefly by magnocellular channels, enables efficient processing of faces, possibly via a retinotectal (subcortical) pathway.


Subject(s)
Choice Behavior/physiology , Face , Psychomotor Performance/physiology , Space Perception/physiology , Adult , Analysis of Variance , Data Interpretation, Statistical , Female , Humans , Male , Photic Stimulation , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...