Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e22566, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094049

ABSTRACT

Increasing complexity in crop nutrient requirement in intensive crop production systems needs alternate multi-nutrient sources. Polyhalite (POLY-4) which contains 14% K2O along withcalcium (17% CaO), magnesium (6% MgO), and sulfur (19% S) can be a possible recourse in this regard. In maize-wheat systems, it was evaluated for productivity, profitability, nutrient usage, and nutrient use efficiency under Indo-Gangetic plain (IGP) zones for consecutive two years (2018-19 and 2019-20). The results revealed that 150% K through POLY-4 produced the maximum maize grain yield under the Trans Indo-Gangetic plains (TGP). The maize grain yield increased by 20.8% and 26.2% under 100% K (POLY-4) and 150% K (POLY-4) over No-K, respectively. But statistically, 100% K (POLY-4) stands similar with both 150% K (POLY-4) and 150% K through muriate of potash (MOP) and equivalent. The trends were noticed under upper Indo-Gangetic plain zones (UGP) also. Similarly, the maximum wheat grain yield (6.12 and 6.29 t/ha under TGP and UGP, respectively) was obtained under 150% K (POLY-4), and remained statistically at par with 100% K (POLY-4), but significantly higher than 150% K (MOP). Under both agro-ecologies i.e. TGP and UGP, the highest system productivity was obtained with recommended N, P, and 150% K application through POLY-4. The added return over NPK remained highest with 150% K (POLY-4) for both maize and wheat. However, higher partial factor productivity for N and S, agronomic, physiological, and translocation efficiencies were noticed under 150% K (POLY-4), and remained at par with 100% K (POLY-4). Increased system yield, added returns, partial factor productivity, agronomic, physiological, and translocation efficiencies under 100% K through POLY-4 (along with recommended N and P) proved its effectiveness as multi-nutrient source for the maize-wheat system under TGP and UGP.

2.
Heliyon ; 9(3): e13997, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36923838

ABSTRACT

Polyhalite popularly known as POLY4 is a multi-nutrient fertiliser containing K, S, Mg, Ca, and micronutrients. POLY4 has a low carbon footprint, is certified for organic agriculture, and has the potential to improve crop productivity and quality attributes Indian mustard which often faces challenges due to imbalanced nutrition supplied in the current fertilisation schedule. The hypothesis of the study was that the multi-nutrient fartiliser POLY4 can ensure balanced nutrition for Indian mustard. Considering this, a field experiment was conducted during the winter seasons of 2017-18 and 2018-19 to evaluate the effect of POLY4 on Indian mustard (Brassica juncea L.) with respect to its yield, quality, and nutrient uptake. POLY4 along with conventional sources of nitrogen (N) and phosphorus (P) was compared to recommended fertilisation practices from conventional sources of N, P, K namely urea, di-ammonium phosphate (DAP), and muriate of potash (KCl). With the application of POLY4, seed yield was significantly improved by about 600 kg ha-1 compared to NP control (no application of K and S) across the two seasons. Compared to recommended practice of NPK, the yield was increased by about 450 kg ha-1 with the application of POLY4. Mustard seed oil and protein percent were also improved with the use of POLY4. POLY4 did not have any adverse effect on the content of anti-nutritional factors and improved the omega-3 fatty acid content of mustard oil. Higher uptakes of macro and micronutrients in the crop were also recorded with POLY4 along with an improved soil nutrient status. From the economic point of view, it was also observed that the application of POLY4 resulted in an increment of net returns of USD 45-60 comparing cultivating mustard with the conventional N, P, K, and S fertilizers only. Therefore, the use of POLY4 as a source of multi-nutrient for balanced nutrition helped to increase the efficiency of applied nutrients which ultimately improved the yield and quality of mustard. This study exhibits the pioneer findings of polyhalite (POLY4) based balanced nutrition in Indian mustard.

3.
Int J Mol Sci ; 23(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35955651

ABSTRACT

By the year 2050, the world's population is predicted to have grown to around 9-10 billion people. The food demand in many countries continues to increase with population growth. Various abiotic stresses such as temperature, soil salinity and moisture all have an impact on plant growth and development at all levels of plant growth, including the overall plant, tissue cell, and even sub-cellular level. These abiotic stresses directly harm plants by causing protein denaturation and aggregation as well as increased fluidity of membrane lipids. In addition to direct effects, indirect damage also includes protein synthesis inhibition, protein breakdown, and membranous loss in chloroplasts and mitochondria. Abiotic stress during the reproductive stage results in flower drop, pollen sterility, pollen tube deformation, ovule abortion, and reduced yield. Plant nutrition is one of the most effective ways of reducing abiotic stress in agricultural crops. In this paper, we have discussed the effectiveness of different nutrients for alleviating abiotic stress. The roles of primary nutrients (nitrogen, phosphorous and potassium), secondary nutrients (calcium, magnesium and sulphur), micronutrients (zinc, boron, iron and copper), and beneficial nutrients (cobalt, selenium and silicon) in alleviating abiotic stress in crop plants are discussed.


Subject(s)
Crops, Agricultural , Stress, Physiological , Humans , Plant Development , Proteomics/methods , Salinity
4.
Curr Res Food Sci ; 5: 272-277, 2022.
Article in English | MEDLINE | ID: mdl-35141528

ABSTRACT

Nuclear magnetic resonance (NMR) is a powerful analytical tool which can be used for authenticating honey, at chemical constituent levels by enabling identification and quantification of the spectral patterns. However, it is still challenging, as it may be a person-centric analysis or a time-consuming process to analyze many honey samples in a limited time. Hence, automating the NMR spectral analysis of honey with the supervised machine learning models accelerates the analysis process and especially food chemistry researcher or food industry with non-NMR experts would benefit immensely from such advancements. Here, we have successfully demonstrated this technology by considering three major sugar adulterants, i.e., brown rice syrup, corn syrup, and jaggery syrup, in honey at varying concentrations. The necessary supervised machine learning classification analysis is performed by using logistic regression, deep learning-based neural network, and light gradient boosting machines schemes.

5.
Chemosphere ; 237: 124477, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31394438

ABSTRACT

In this work we present a completely new dataset of Rare Earth Element (REE) distribution and fractionation in the groundwater and sediments of the world's largest populated river island-Majuli, located in the Brahmaputra River, India. Groundwater (n = 9) and borehole sediments (n = 23) of different depths were collected randomly and analyzed for REEs using inductively coupled plasma mass spectrometry (ICP-MS). Multivariate statistical techniques were applied to determine interrelationships among different REEs. Both water and sediments exhibit a higher content of light rare earth elements (LREEs) than heavy rare earth elements (HREEs), implying that source rock composition primarily controls the REE signatures of these river sediments, largely owing to variations in levels of chlorite and monazite, which are more abundant in bottom river sediments of the Brahmaputra. However, lower LREE/HREE ratios in groundwater samples (8.42-14.48) compared to sediments (8.9-52.6) suggest less dissolved phase mobilization of LREE during weathering and transport. Hierarchical cluster analysis showed more consistent clustering in sediment compared to water and clear demarcations of MREE, HREE and LREE were observed in the sediments. The primitive mantle-normalized REE patterns of borehole sediments were similar to the upper continental crust (UCC) and the compositions of average Himalayan rocks. LREE enrichment compared to HREE suggest dominance of a felsic source. However, a La/V versus Th/Yb plot suggests a small contribution from the mafic source component. The sediments show high Th/Sc (>1 of UCC) and high Zr/Sc. A Eu/Eu* verses GdN/YbN plot suggests that the dominant source with Upper crustal composition has undergone multiple recycling.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Metals, Rare Earth/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , India , Islands , Rivers/chemistry , Weather
7.
J Oleo Sci ; 57(9): 471-5, 2008.
Article in English | MEDLINE | ID: mdl-18685229

ABSTRACT

Fatty acid amides like erucamide are mainly used for lubrication and as slip agent to decrease friction in polymer and plastic industry. Erucamide is normally synthesized by ammonolysis of triglycerides or fatty acids at 200 degrees C and at high pressure (345-690 kPa.). However using urea in place of ammonia the economic synthesis of erucamide is possible at atmospheric pressure at approx 190 degrees C. In present investigation, the kinetics of synthesis of erucamide by ammonolysis of erucic acid has been investigated. The optimum conditions for the synthesis of erucamide have also been determined. 1:4 molar ratio of erucic acid to urea, 190 degrees C temperature and catalyst [P2O5 with (NH4)2H PO4, {(1:1) w/w }] concentration 3% (by wt. of erucic acid) were the optimum condition for synthesis of erucamide from erucic acid and can obtain a maximum yield of 92% of pure erucamide. Some other catalysts as titanium-iso -propoxide, phosphorus pent oxide were also tried but these catalysts were not economical.


Subject(s)
Erucic Acids/chemical synthesis , Fatty Acids/chemistry , Urea/chemistry , Atmospheric Pressure , Kinetics , Models, Chemical , Phosphates/chemistry , Phosphorus Compounds/chemistry , Temperature
8.
J Oleo Sci ; 56(10): 507-9, 2007.
Article in English | MEDLINE | ID: mdl-17898456

ABSTRACT

Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.


Subject(s)
Erucic Acids/metabolism , Fatty Acids/pharmacology , Lipase/metabolism , Urea/pharmacology , Catalysis/drug effects , Chemistry, Pharmaceutical/economics , Chemistry, Pharmaceutical/methods , Enzymes, Immobilized , Erucic Acids/economics , Fungal Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...