Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 417(2): 513-24, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18800966

ABSTRACT

Myocardial ischaemia is associated with the generation of lipid peroxidation products such as HNE (4-hydroxy-trans-2-nonenal); however, the processes that predispose the ischaemic heart to toxicity by HNE and related species are not well understood. In the present study, we examined HNE metabolism in isolated aerobic and ischaemic rat hearts. In aerobic hearts, the reagent [(3)H]HNE was glutathiolated, oxidized to [(3)H]4-hydroxynonenoic acid, and reduced to [(3)H]1,4-dihydroxynonene. In ischaemic hearts, [(3)H]4-hydroxynonenoic acid formation was inhibited and higher levels of [(3)H]1,4-dihydroxynonene and [(3)H]GS-HNE (glutathione conjugate of HNE) were generated. Metabolism of [(3)H]HNE to [(3)H]4-hydroxynonenoic acid was restored upon reperfusion. Reperfused hearts were more efficient at metabolizing HNE than non-ischaemic hearts. Ischaemia increased the myocardial levels of endogenous HNE and 1,4-dihydroxynonene, but not 4-hydroxynonenoic acid. Isolated cardiac mitochondria metabolized [(3)H]HNE primarily to [(3)H]4-hydroxynonenoic acid and minimally to [(3)H]1,4-dihydroxynonene and [(3)H]GS-HNE. Moreover, [(3)H]4-hydroxynonenoic acid was extruded from mitochondria, whereas other [(3)H]HNE metabolites were retained in the matrix. Mitochondria isolated from ischaemic hearts were found to contain 2-fold higher levels of protein-bound HNE than the cytosol, as well as increased [(3)H]GS-HNE and [(3)H]1,4-dihydroxynonene, but not [(3)H]4-hydroxynonenoic acid. Mitochondrial HNE oxidation was inhibited at an NAD(+)/NADH ratio of 0.4 (equivalent to the ischaemic heart) and restored at an NAD(+)/NADH ratio of 8.6 (equivalent to the reperfused heart). These results suggest that HNE metabolism is inhibited during myocardial ischaemia owing to NAD(+) depletion. This decrease in mitochondrial metabolism of lipid peroxidation products and the inability of the mitochondria to extrude HNE metabolites could contribute to myocardial ischaemia/reperfusion injury.


Subject(s)
Aldehydes/metabolism , Mitochondria, Heart/metabolism , Myocardial Ischemia/metabolism , Aldehydes/chemistry , Aldehydes/pharmacology , Animals , Mitochondria, Heart/drug effects , Molecular Structure , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
2.
J Biol Chem ; 281(22): 15110-20, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16567803

ABSTRACT

Aldose reductase (AR) reduces cytotoxic aldehydes and glutathione conjugates of aldehydes derived from lipid peroxidation. Its inhibition has been shown to increase oxidative injury and abolish the late phase of ischemic preconditioning. However, the mechanisms by which ischemia regulates AR activity remain unclear. Herein, we report that rat hearts subjected to ischemia, in situ or ex vivo, display a 2-4-fold increase in AR activity. The AR activity was not further enhanced by reperfusion. Activation increased Vmax of the enzyme without affecting the Km and decreased the sensitivity of the enzyme to inhibition by sorbinil. Enzyme activation could be prevented by pretreating the hearts with the radical scavenging thiol, N-(2-mercaptoproprionyl)glycine or the superoxide dismutase mimetic, Tiron, or by treating homogenates with dithiothreitol. In vitro, the recombinant enzyme was activated upon treatment with H2O2 and the activated, but not the native enzyme, formed a covalent adduct with the sulfenic acid-specific reagent dimedone. The enzyme activity in the ischemic, but not the nonischemic heart homogenates was inhibited by dimedone. Separation of proteins from hearts subjected to coronary occlusion by two-dimensional electrophoresis and subsequent matrix-assisted laser desorption ionization time-of-flight/mass spectrometry analysis revealed the formation of sulfenic acids at Cys-298 and Cys-303. These data indicate that reactive oxygen species formed in the ischemic heart activate AR by modifying its cysteine residues to sulfenic acids.


Subject(s)
Aldehyde Reductase/metabolism , Myocardial Ischemia/enzymology , Myocardium/enzymology , Aldehyde Reductase/chemistry , Aldehyde Reductase/isolation & purification , Animals , Cysteine/chemistry , Cysteine/metabolism , Electrophoresis, Gel, Two-Dimensional , Enzyme Activation/drug effects , Free Radical Scavengers/pharmacology , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Kinetics , Male , Oxidation-Reduction , Perfusion , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfenic Acids/chemistry , Sulfenic Acids/metabolism
3.
Neurochem Res ; 29(4): 811-8, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15098946

ABSTRACT

In the present study, we investigated the effect of naturally occurring and synthetic peroxides on K+-depolarization-evoked release of [3H]D-aspartate from bovine isolated retinae. Furthermore, effect of peroxides on endogenous glutamate concentrations were measured by HPLC in bovine neural retinae and vitreous humor of eyes treated with hydrogen peroxide (H2O2) ex vivo. Both naturally occurring H2O2 (1-100 microM) and synthetic (cumene hydroperoxide, cuOOH; 1-100 microM) peroxides caused a concentration-dependent inhibition of K+-evoked [3H]D-aspartate release without affecting basal tritium efflux. The antioxidant, trolox (2 mM) prevented the inhibition of evoked [3H]D-aspartate overflow elicited by both H2O2 (30 microM) and cuOOH (10 microM). Inhibition of catalase by 3-amino-triazole (3- AT 100 mM) enhanced an inhibitory effect of a low concentration of H2O2 (1 microM) but antagonized the effect of H2O2 (30 microM) on K+-induced [3H]D-aspartate release. In ex vivo experiments, exogenously applied H2O2 (1-100 microM) also caused a concentration-related decrease in glutamate levels in the bovine retina. We conclude that peroxides can inhibit K+-evoked release of [3H]D-aspartate and also decrease endogenous glutamate concentrations in the bovine retina.


Subject(s)
Aspartic Acid/metabolism , Peroxides/pharmacology , Retina/drug effects , Animals , Cattle , Chromatography, High Pressure Liquid , Organ Culture Techniques , Retina/metabolism , Tritium
4.
Am J Physiol Heart Circ Physiol ; 285(2): H727-34, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12730060

ABSTRACT

Acrolein is a highly reactive aldehyde pollutant and an endogenous product of lipid peroxidation. Increased generation of, or exposures to, acrolein incites pulmonary and vascular injury. The effects of acrolein on the vasomotor responses of rat aortic rings were studied to understand its mechanism of action. Incubation with acrolein (10-100 microM) alone did not affect the resting tone of aortic vessels; however, a dose-dependent relaxation of phenylephrine-precontracted aortic rings was observed. Acrolein-induced relaxation was slow and time dependent and the extent of relaxation after 100 min of application was 44.7 +/- 4.1% (10 microM), 56.0 +/- 5.6% (20 microM), 61.0 +/- 7.9% (40 microM), and 96.1 +/- 2.1 (80 microM), respectively, versus 14.2 +/- 3.3% relaxation in the absence of acrolein. Acrolein-induced vasorelaxation was prevented by endothelial denudation and was abolished on pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester, the guanylyl cyclase inhibitor 1H-[1,2,4]oxidazolo[4,3-a]quinoxaline-1-one, or the cyclooxygenase inhibitor indomethacin. Inhibition of K+ channels (by tetrabutylammonium) or Na+-K+-ATPase (by ouabain) did not significantly prevent acrolein-mediated vasorelaxation. Exposure to acrolein in the presence or absence of other compounds elicited slow wave vasomotor effect in 77% of aortic vessels versus 1.4% in control. Vasomotor responses were also studied on aortic rings prepared from rats fed 2 mg. kg-1. day-1 acrolein for 3 alternate days by oral gavage. These vessels developed a significantly lower contractile response to phenylephrine compared with controls. Together, these results indicate that acute acrolein exposure evokes delayed vasorelaxation due to a nitric oxide- and prostacyclin-dependent mechanism, whereas in vivo acrolein exposure compromises vessel contractility.


Subject(s)
Acrolein/pharmacology , Air Pollutants/pharmacology , Aorta, Thoracic/drug effects , Vasodilation/drug effects , Animals , Aorta, Thoracic/physiology , Blotting, Western , Epoprostenol/biosynthesis , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase/analysis , Nitric Oxide Synthase Type III , Phenylephrine/pharmacology , Rats , Rats, Sprague-Dawley , Vasoconstrictor Agents/pharmacology
5.
Vascul Pharmacol ; 40(1): 51-7, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12646410

ABSTRACT

tert-Butyl hydroperoxide (t-BOOH), a membrane permeant oxidant, elicits enhanced vasoconstriction of perfused kidney and mesenteric arterial beds isolated from DOCA-salt-induced hypertensive rats. We hypothesize that enhanced vasoconstriction to t-BOOH during DOCA-salt hypertension involves free radical species and decreases in the expression of the endogenous antioxidant enzyme, superoxide dismutase (SOD). t-BOOH (0.01-50 micromol) dose-dependently constricted the perfused kidney and mesenteric vascular beds (MVB) of rats. Infusion of tempol (100 microM), a free radical scavenger, reduced the constrictor responses from 116.70+/-16.65% to 57.45+/-9.25% (kidneys) and from 72.91+/-3.70% to 48.10+/-0.10% (mesenteric beds). t-BOOH-induced vasoconstriction of both vascular beds were also significantly reduced in DOCA-salt rats treated chronically (15 mg/kg ip, 3 weeks) with tempol (DOCA/TEMPOL). Catalase (500 IU) did not attenuate t-BOOH-induced responses in vascular beds of DOCA/TEMPOL rats. Western blot analyses showed significant reduction in Cu/Zn-SOD expression in DOCA-salt versus sham rats of both vascular preparations; SOD expressions were protected from down-regulation in DOCA/TEMPOL vascular beds. This study suggests that free radical species is involved in both t-BOOH-induced constrictions and in the down-regulation of SOD protein expressions during DOCA-salt hypertension.


Subject(s)
Blood Pressure/drug effects , Desoxycorticosterone , Hypertension/physiopathology , Vasoconstriction/drug effects , tert-Butylhydroperoxide/pharmacology , Animals , Blood Pressure/physiology , Cyclic N-Oxides/therapeutic use , Dose-Response Relationship, Drug , Free Radicals/metabolism , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/enzymology , Male , Rats , Rats, Sprague-Dawley , Spin Labels , Superoxide Dismutase/biosynthesis , Vasoconstriction/physiology
6.
Life Sci ; 71(11): 1255-66, 2002 Aug 02.
Article in English | MEDLINE | ID: mdl-12106591

ABSTRACT

tert-Butyl hydroperoxide (t-BOOH), an inducer of oxidative stress in vitro, elicits constrictor responses of the isolated, rat kidney and mesenteric arteries perfused (5 ml/min) with physiological salt solutions (PSS) at 37 degrees C gassed with carbogen. We hypothesized that generation of superoxide anions (O(2)(-)) accounts for these responses. We assessed responses to t-BOOH in preparations with/without endothelium, and in the absence/presence of antioxidant compounds, catalase and tempol, scavengers of hydroxyl (OH(-)) radical and O(2)(-), respectively. t-BOOH (0.01-50 micromol) induced (expressed as % of 50 micromol KCl vasoconstriction) were abolished by endothelium denudation, perfusion with Ca(2+)-free PSS and by nifedipine, (1 nM). Infusion of t-BOOH (0.1 microM) did not significantly (P > 0.05) affect phenylepherine E(max) in the mesenteric arteries, however it reduced phenylepherine E(max) responses in the kidney from 94.9 +/- 3.9 % to 64.7 +/- 4.7 %. Nitroblue tetrazolium, as well as alpha-phenyl N-tert-butyl nitrone, at 100 microM, but not catalase (500 IU) significantly attenuated t-BOOH (10 micromol) vasoconstrictor responses. Tempol (100 microM), a membrane permeable antioxidant, also significantly reduced t-BOOH (10 micromol) responses from 17.0 +/- 1.9 % (control) to 9.6 +/- 0.5 % (+tempol) in the mesenteric arteries and from 40.4 +/- 4.2 % (control) to 20.7 +/- 1.5 % (+tempol) in the kidney. Our data suggest that t-BOOH elicits vasoconstriction via two distinct mechanisms: (i) increased influx of extracellular Ca(2+), and (ii) generation of free radicals including O(2)(-) anions.


Subject(s)
Kidney/blood supply , Mesenteric Arteries/drug effects , Muscle, Smooth, Vascular/drug effects , Vasoconstriction/drug effects , tert-Butylhydroperoxide/pharmacology , Animals , Calcium/metabolism , Catalase/pharmacology , Cyclic N-Oxides , Endothelium, Vascular/drug effects , Enzyme Inhibitors/pharmacology , Free Radical Scavengers/pharmacology , In Vitro Techniques , Male , Mesenteric Arteries/physiology , Muscle, Smooth, Vascular/physiology , NG-Nitroarginine Methyl Ester/pharmacology , Nitroblue Tetrazolium/pharmacology , Nitrogen Oxides/pharmacology , Oxidative Stress , Phenylephrine/pharmacology , Potassium Chloride/pharmacology , Rats , Rats, Sprague-Dawley , Vasoconstrictor Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...