Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 107(1-2): 129-35, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22867887

ABSTRACT

Mucopolysaccharidosis type IIIB (MPS IIIB) is a neuropathic lysosomal storage disorder (LSD) resulting from an inherited deficiency of N-acetyl-α-D-glucosaminidase (Naglu) activity, an enzyme required to degrade the glycosaminoglycan heparan sulfate (HS). A deficiency in Naglu activity leads to lysosomal accumulation of HS as a primary storage substrate, and the gangliosides GM2 and GM3 as secondary accumulation products. To test the effect on neuropathogenesis of ganglioside accumulation, we bred mice deficient in both Naglu and GalNaAcT activities. The latter is the enzyme required for synthesis of GM2 and other complex gangliosides. Contrary to our expectation and to double knockout (DKO) studies where GalNAcT was knocked out in combination with other LSDs, our DKO mice showed a drastically shortened lifespan (24.5±1.4 weeks, versus 50.5±0.9 weeks (MPS IIIB), and 38.6±1.2 weeks (GalNAcT)). To confirm that HS storage was the primary element resulting in the accelerated disease in our DKO mice, and not a locus tightly linked to the Naglu gene, we replicated our study with MPS IIIA mice, and found a virtually identical result (27.5±1.8 weeks, versus 53.8±1.6 weeks). All DKO mice showed motor signs of hind limb ataxia and hyper-extension, which were not seen in single KO or normal mice. At approximately 5 months of age, the MPS IIIB-DKO showed a unique pattern of vacuolization and nerve fiber degeneration in the corpus callosum, seen only in the DKO mice, as well as the relatively early intracytoplasmic vacuolation of many neurons and glia characteristic of the MPS IIIB mice. We analyzed motor performance on a rocking Rota-Rod beginning at 3 months of age. The MPS IIIA-DKO and MPS IIIB-DKO mice showed impaired performance and were statistically different from all parental lines. In particular, the MPS IIIB-DKO mice were significantly different from the parent MPS IIIB strains at 3, 5, and 6 months (p≤0.0245). In conclusion we identified an accelerated phenotype associated with MPS IIIB within a DKO model system which showed white matter changes, with attendant performance deficits and a drastically shortened lifespan. This was in stark contrast to our expectations of a salutary response to the elimination of GM2. Despite this, the accelerated pathology and clinical signs represent a potentially improved system to study MPS IIIB neuropathogenesis as well as the role of complex gangliosides in normal CNS function.


Subject(s)
Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology , N-Acetylgalactosaminyltransferases/genetics , Animals , Disease Models, Animal , Disease Progression , Female , Glycosphingolipids/metabolism , Male , Mice , Mice, Knockout , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/mortality , Rotarod Performance Test
2.
J Virol ; 79(17): 11082-94, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16103159

ABSTRACT

The p5 promoter region of adeno-associated virus type 2 (AAV-2) is a multifunctional element involved in rep gene expression, Rep-dependent replication, and site-specific integration. We initially characterized a 350-bp p5 region by its ability to behave like a cis-acting replication element in the presence of Rep proteins and adenoviral factors. The objective of this study was to define the minimal elements within the p5 region required for Rep-dependent replication. Assays performed in transfected cells (in vivo) indicated that the minimal p5 element was composed by a 55-bp sequence (nucleotides 250 to 304 of wild-type AAV-2) containing the TATA box, the Rep binding site, the terminal resolution site present at the transcription initiation site (trs(+1)), and a downstream 17-bp region that could potentially form a hairpin structure localizing the trs(+1) at the top of the loop. Interestingly, the TATA box was absolutely required for in vivo but dispensable for in vitro, i.e., cell-free, replication. We also demonstrated that Rep binding and nicking at the trs(+1) was enhanced in the presence of the cellular TATA binding protein, and that overexpression of this cellular factor increased in vivo replication of the minimal p5 element. Together, these studies identified the minimal replication origin present within the AAV-2 p5 promoter region and demonstrated for the first time the involvement of the TATA box, in cis, and of the TATA binding protein, in trans, for Rep-dependent replication of this viral element.


Subject(s)
DNA-Binding Proteins/metabolism , Dependovirus/genetics , Gene Expression Regulation, Viral , Promoter Regions, Genetic/genetics , TATA-Box Binding Protein/physiology , Viral Proteins/metabolism , Base Sequence , Binding Sites , Cell Line , Dependovirus/physiology , Humans , Nucleic Acid Conformation , TATA Box , Transcription Initiation Site , Virus Replication
3.
Virology ; 335(2): 252-63, 2005 May 10.
Article in English | MEDLINE | ID: mdl-15840524

ABSTRACT

The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68.


Subject(s)
DNA-Binding Proteins/pharmacology , Dependovirus/chemistry , Recombinant Proteins/pharmacology , Viral Proteins/pharmacology , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , Dependovirus/genetics , Endocytosis , HeLa Cells , Heparin/pharmacology , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility , Viral Proteins/biosynthesis , Viral Proteins/genetics , Viral Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...