Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Sci Rep ; 13(1): 13679, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608210

ABSTRACT

The need for evidence-based data, to inform policy decisions on malaria vector control interventions in Nigeria, necessitated the establishment of mosquito surveillance sites in a few States in Nigeria. In order to make evidence-based-decisions, predictive studies using available data becomes imperative. We therefore predict the distribution of the major members of the Anopheles gambiae s.l. in Nigeria. Immature stages of Anopheles were collected from 72 study locations which span throughout the year 2020 resulted in the identification of over 60,000 Anopheline mosquitoes. Of these, 716 breeding sites were identified with the presence of one or more vector species from the An. gambiae complex and were subsequently used for modelling the potential geographical distribution of these important malaria vectors. Maximum Entropy (MaxEnt) distribution modeling was used to predict their potentially suitable vector habitats across Nigeria. A total of 23 environmental variables (19 bioclimatic and four topographic) were used in the model resulting in maps of the potential geographical distribution of three dominant vector species under current climatic conditions. Members of the An. gambiae complex dominated the collections (98%) with Anopheles stephensi, Anopheles coustani, Anopheles funestus, Anopheles moucheti, Anopheles nilli also present. An almost equal distribution of the two efficient vectors of malaria, An. gambiae and Anopheles coluzzii, were observed across the 12 states included in the survey. Anopheles gambiae and Anopheles coluzzii had almost equal, well distributed habitat suitability patterns with the latter having a slight range expansion. However, the central part of Nigeria (Abuja) and some highly elevated areas (Jos) in the savannah appear not suitable for the proliferation of these species. The most suitable habitat for Anopheles arabiensis was mainly in the South-west and North-east. The results of this study provide a baseline allowing decision makers to monitor the distribution of these species and establish a management plan for future national mosquito surveillance and control programs in Nigeria.


Subject(s)
Anopheles , Malaria , Animals , Nigeria , Malaria/prevention & control , Mosquito Vectors , Ecosystem
2.
Am J Trop Med Hyg ; 108(6): 1115-1121, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37094786

ABSTRACT

Prior to 2018, malaria therapeutic efficacy studies (TESs) in Nigeria were implemented separately at different sites, as assigned by the National Malaria Elimination Program (NMEP). In 2018, however, the NMEP engaged the Nigerian Institute of Medical Research to coordinate the 2018 TESs in 3 of 14 sentinel sites with the objective of standardizing their conduct across all three sites: Enugu, Kano, and Plateau states in three of six geopolitical zones. Artemether-lumefantrine and artesunate-amodiaquine, the two first-line drugs for treatment of acute uncomplicated malaria in Nigeria, were tested in both Kano and Plateau states. In Enugu State, however, artemether-lumefantrine and dihydroartemisinin-piperaquine were the test drugs, with dihydroartemisinin-piperaquine being tested for potential inclusion in Nigerian treatment policy. The TES was conducted in 6-month to 8-year-old children and was funded by the Global Fund with additional support from the WHO. A multipartite core team comprised of the NMEP, the WHO, the U.S. Presidential Malaria Initiative, academia, and the Nigerian Institute of Medical Research was set up to oversee the execution of the 2018 TES. This communication reports best practices adopted to guide its coordination, and lessons learned during in the process, including applying developed standard operating procedures, powering the sample size adequately for each site to report independently, training the investigating team for fieldwork, facilitating stratification of decisions, determining efficiencies derived from monitoring and quality assessment, and optimizing logistics. The planning and coordination of the 2018 TES activities is a model of a consultative process for the sustainability of antimalarial resistance surveillance in Nigeria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Child , Humans , Antimalarials/therapeutic use , Nigeria/epidemiology , Malaria, Falciparum/drug therapy , Artemether/therapeutic use , Drug Combinations , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria/drug therapy , Amodiaquine/therapeutic use , Ethanolamines/therapeutic use , Fluorenes/therapeutic use
3.
J Infect Dev Ctries ; 16(8): 1351-1358, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36099380

ABSTRACT

INTRODUCTION: To identify the specific Anopheles mosquito sibling species responsible for malaria transmission, determine their vectorial potential, and predict suitable control measures, this study investigated genetic identities, human blood feeding, and sporozoite infection rates of endophilic Anopheles mosquitoes in Gaa-Bolorunduro, a cattle rearing community in Kwara State, Nigeria. METHODOLOGY: Monthly pyrethrum spray collections of Anopheles mosquitoes were conducted for one year in addition to PCR characterization of sibling species and ELISA probing of human blood meal and sporozoite infections. Mean numbers and human blood indices (HBI) of the different Anopheles sibling species identified were compared. RESULTS: The total of 668 PCR-identified mosquitoes comprised 50.8% An. arabiensis, 46.7% An. gambiae, and 2.5% An. coluzzii. Annual mean numbers of An. arabiensis was significantly higher (p = 0.001) than An. coluzzii but not An. gambiae (p = 0.602). Proportions of An. arabiensis found with human blood (0.29) were lower compared to An. gambiae (0.72) and An. coluzzii (0.75). However, the annual mean HBI of An. arabiensis was not significantly higher than An. gambiae (p = 0.195) and An. coluzzii (p = 0.249). Plasmodium falciparum sporozoite infection rate was 1.6% in An. gambiae, 0.9% in An. arabiensis and 0% in An. coluzzii. CONCLUSIONS: The prevalent An. arabiensis and An. gambiae mosquitoes found indoors, despite the outdoor cattle population barrier, could be targeted by community-scale utilization of long-lasting insecticide-treated bed nets. Further studies on outdoor mosquito surveillance and bovine blood meal identification are required for the recommendation of suitable complementary vector control measures for the community.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Animals , Anopheles/genetics , Cattle , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors , Nigeria/epidemiology , Pedigree , Sporozoites
4.
Malar J ; 21(1): 19, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012559

ABSTRACT

BACKGROUND: Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. METHODS: Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. CONCLUSIONS: Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact.


Subject(s)
Cost of Illness , Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Africa South of the Sahara/epidemiology , Humans , Incidence , Insecticide-Treated Bednets/classification , Malaria/epidemiology , Pilot Projects , Prevalence
5.
Acta Trop ; 227: 106291, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34958768

ABSTRACT

Malaria is a major public health challenge in Africa with Nigeria accounting for the highest burden of the disease in the world. Vector control has proved to be a highly effective component of malaria control, however, the development and spread of insecticide resistance in major vectors of malaria have been a major challenge. This study assessed resistance mechanisms in Anopheles coluzzii populations from Kosofe, Lagos mainland and Ojo Local Government Areas in Lagos, Nigeria where An. gambiae s.l is resistant to DDT and Permethrin. WHO susceptibility bioassay test was used in determining resistance status of An. coluzzii to discriminating doses of DDT and Permethrin while synergist assay was used to assess the involvement of monooxygenases in resistance development. Sub-species of An. gambiae s.l (An. gambiae and An. coluzzii) were identified using polymerase chain reaction (PCR) and Restriction Fragment Length Polymorphism (PCR-RFLP) while Allele-Specific Polymerase Chain Reaction (AS-PCR) assay was used to detect knockdown mutation (kdr-West; L1014F). Biochemical assays were used in determining the activities of metabolic enzymes. High DDT resistance was recorded in An. coluzzii populations from the three sites. Mortality rate of mosquitoes exposed confirmed Permethrin resistance in Kosofe (50%) and Lagos mainland (48%) but resistance was suspected in Ojo (96%). All specimens tested were confirmed as An. coluzzii with low kdr frequency; 11.6%, 16.4% and 6.7% in Kosofe, Lagos mainland and Ojo respectively. Pre-exposure to synergist (PBO) before exposure to Permethrin led to increased mortality in all populations. Esterase activity was insignificantly overexpressed in Kosofe (p = 0.849) and Lagos mainland (p = 0.229) populations. In contrast, GST activity was significantly lower in populations from Lagos mainland (63.650 ± 9.861; p = 0.007) and Ojo (91.765 ± 4.959; p = 0.042) than Kisumu susceptible strains (120.250 ± 13.972). Monooxygenase activity was higher in Lagos mainland (2.371 ± 0.261) and Ojo (1.361 ± 0.067) populations, albeit significantly in Lagos mainland (p = 0.007) only. Presence of target-site mutation in all populations, increased mortality with pre-exposure to PBO and elevated monooxygenase in Lagos mainland population were confirmed. Multiple resistance mechanisms in some urban populations of An. coluzzii from Lagos, Nigeria calls for appropriate resistance management strategies.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Humans , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Nigeria , Pyrethrins/pharmacology , Urban Population
6.
Infect Genet Evol ; 95: 105042, 2021 11.
Article in English | MEDLINE | ID: mdl-34419672

ABSTRACT

The ability of malaria parasites to develop resistance to antimalarial drugs has made it necessary to continuously survey malaria parasite populations for resistance markers. Mutations in specific malaria parasite genes confer resistance to antimalarial drugs. The study compared mutations in Pfcrt and Pfmdr1 genes of P. falciparum from two ecologically different areas of Nigeria. Plasmodium falciparum dried blood spots collected from New Bussa (Northcentral Nigeria) and Ijede (Southwest Nigeria) were analysed by PCR-RFLP for Pfcrt, K76 T, Pfmdr1, N86Y and Y184F mutations. Pfmdr1 copy number was determined by quantitative-PCR. A total of 145 blood spots [Ijede = 55; New Bussa = 90 blood spots] were analysed, but Pfcrt gene was successfully amplified in 144 samples while Pfmdr1 was amplified in 132 samples. Overall, prevalence of mutant forms of Pfcrt 76 T,Pfmdr1 86Y and 184F were 74.3% (95% CI: 66.4-81.2%), 18.2% (95% CI: 12.0-25.8%) and 35.6% (95% CI: 27.5-44.4%). The frequency of Pfcrt 76 T was similar in both study sites [Ijede: 81.8% (95%CI: 69.1-90.9%); New Bussa: 69.7% (95%CI: 59.0-79.0), p = 0.105]. However, the frequencies of Pfmdr1 86Y and 184F were significantly higher in Ijede (28.3% and 62.3%) than in New Bussa (11.4% and 17.7%), respectively (P < 0.05). Eight parasite genotypes based on three codons of the two genes were identified. The most frequent genotype was TNY 53(40.5%) while the least was KYF 1 (0.8%). The most frequent genotype in Ijede and New Bussa were TNF 18(34.0%) and TNY 40 (51.3%) respectively. The frequency of wild strain KNF in Ijede and New Bussa were 3 (5.7%) and 18 (23.1%), respectively. The distribution of the genotypes differed significantly by location. The genotypes with more than two or more mutations were more in Ijede 32 (60.4%) than in New Bussa 16 (20.5%) (p < 0.001). Amplification of Pfmdr1 copy number was not observed in the two study sites. The prevalence of Pfcrt 76 T was similar in both locations while Pfmdr1 86Y and 184F differed in both locations. Single nucleotide polymorphisms in the three codons assessed were more in Ijede than in New Bussa.


Subject(s)
Malaria, Falciparum/epidemiology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Infant , Malaria, Falciparum/parasitology , Middle Aged , Mutation , Nigeria/epidemiology , Prevalence , Young Adult
7.
J Med Entomol ; 58(3): 1280-1286, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33420501

ABSTRACT

Malaria is a leading public health challenge causing mortality and morbidity in sub-Saharan Africa. Prominent malaria vector control methods employed in sub-Saharan Africa include Long Lasting Insecticide Nets (LLINs) and Indoor Residual spraying (IRS). This study investigated knowledge, attitude and practices (KAP) of malaria vector control methods in Lagos, South-West Nigeria. Structured questionnaires were employed for the cross-sectional survey which was carried out between May and August 2018. Multi-stage sampling technique was used to select Lagos Mainland, Kosofe, and Ojo local government areas (LGAs). Five hundred and twenty questionnaires were used for the study. Data were analyzed for descriptive statistics, whereas χ 2 was used to determine influence of respondents' LGA, level of education and type of dwelling on respondents' attitude and practice. Respondents' LGAs have no significant impact on attitude and practice to malaria vector control methods. However, 'level of education' as well as 'type of dwelling structure' impacted significantly on some practices and attitude. Basically, IRS is the major tool employed in malaria vector control, but sometimes it is used in combination with other methods. A good number of residents also use LLINs. 'Choice of method' employed is mainly based on the effectiveness of method. General perception about LLINs and IRS is that they are effective, cheap and safer. Considering the widespread use of IRS and LLINs for malaria vector control in Lagos, implementation of malaria control programs should consider KAP to these two strategies.


Subject(s)
Culicidae , Health Knowledge, Attitudes, Practice , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Mosquito Vectors , Animals , Cross-Sectional Studies , Nigeria
8.
Am J Trop Med Hyg ; 104(3): 979-986, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33350366

ABSTRACT

Insecticide treated nets (ITNs) have been the major tool in halving malaria's burden since 2000, but pyrethroid insecticide resistance threatens their ongoing effectiveness. In 2017, the WHO concluded that long-lasting ITNs (LLINs) with a synergist, piperonyl butoxide (PBO), provided additional public health benefit over conventional (pyrethroid-only) LLINs alone in areas of moderate insecticide resistance and endorsed them as a new class of vector control products. We performed an economic appraisal of PBO nets compared with conventional LLINs in 2019 US$ from prevention and health systems perspectives (including treatment cost offsets). We used data from a pragmatic randomized 2012-2014 trial in Nigeria with epidemiological outcomes in an area with confirmed pyrethroid resistance. Each village had 50 months of epidemiologic data, analyzed by village by month, using negative binomial regression. Compared with LLINs, although adding $0.90 per net delivered, PBO nets reduced symptomatic malaria cases by 33.4% (95% CI 10.2-50.6%). From a prevention perspective, the incremental cost-effectiveness ratio was $11 (95% CI $8-$37) per disability-adjusted life year averted. From the health systems perspective, PBO nets were significantly cost-saving relative to conventional LLINs. The benefit-cost analysis found that the added economic benefits of PBO nets over LLINs were $201 (95% CI $61-$304) for every $1 in incremental costs. Growing pyrethroid resistance is likely to strengthen the economic value of PBO nets over LLINs. Beyond their contribution to reducing malaria, PBO nets deliver outstanding economic returns for a small additional cost above conventional LLINs in locations with insecticide resistance.


Subject(s)
Cost-Benefit Analysis , Insecticide-Treated Bednets , Insecticides/pharmacology , Malaria/prevention & control , Piperonyl Butoxide/pharmacology , Pyrethrins/pharmacology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Anopheles/drug effects , Child , Child, Preschool , Female , Humans , Infant , Insecticide Resistance , Malaria/epidemiology , Male , Middle Aged , Nigeria/epidemiology , Piperonyl Butoxide/economics , Pyrethrins/economics , Young Adult
9.
Malar J ; 19(1): 393, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33160357

ABSTRACT

BACKGROUND: Incidence of malaria and anaemia are of public health importance especially in pregnant women in endemic regions, due to the negative health consequences to the mother and fetus. This study aimed to assess the pattern of falciparum malaria infection and anaemia, based on malaria prevention methods practiced by participants. METHODS: A semi-structured tool was used to capture information on demographic, socio-economic and malaria prevention practices from 113 pregnant women attending antenatal clinics in 2 peri-urban health facilities in Lagos, southwest Nigeria. Malaria microscopy was conducted and haematocrit was measured. Logistic regression analysis was performed on the data collated from the survey. RESULTS: The prevalence of anaemia among pregnant women was 87.2%. The mean (± sd) packed cell volume (PCV) (%) of the 22 (19.5%) infected subjects (26.8 ± 6.6), was significantly lower (t = -2.60, P value = 0.007) than that of the 91 (80.5%) uninfected subjects (30.8 ± 6.0). The prevalence of infection was highest in the 3rd trimester (n = 40, 35.4%) at 27.5% (11/40) and among those in their first pregnancy (n = 32, 28.3%) at 25.0% (8/32). There was a significant difference (t = -2.23, P-value = 0.01) in the mean PCV % of pregnant women who consumed herbal teas in pregnancy (28.2 ± 5.2) compared to those who did not (30.8 ± 6.6). Regression analysis showed that first pregnancy, anti-malarial use and insecticide-treated nets use the night before study had increased odds of malaria infection in participants (OR = 1.35, P = 0.006, 95% CI 0.52-2.49; OR = 2.3, P = 0.005, 95% CI 0.14-0.41; OR = 1.92, P = 0.001, 95% CI 0.62-5.98) while intermittent preventive treatment (IPT) participation and formal education were strongly and significantly associated with lower risk of parasitaemia (OR = 0.95, P = 0.025, 95% CI 0.41-2.26; OR = 0.44, P = 0.005, 95% CI 0.34-10.50). CONCLUSION: Interventions that will reduce malaria and moderate to severe anaemia, especially in a first pregnancy, should include education on the correct use of long-lasting insecticide-treated bed nets (LLIN), IPT and the dangers of herbal teas in pregnancy.


Subject(s)
Malaria, Falciparum/epidemiology , Parasitemia/epidemiology , Pregnancy Complications, Parasitic/epidemiology , Adolescent , Adult , Antimalarials/therapeutic use , Female , Humans , Insecticide-Treated Bednets/statistics & numerical data , Malaria, Falciparum/parasitology , Nigeria/epidemiology , Parasitemia/parasitology , Parity , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Prenatal Diagnosis/statistics & numerical data , Prevalence , Socioeconomic Factors , Young Adult
10.
BMC Res Notes ; 13(1): 497, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33109270

ABSTRACT

OBJECTIVE: Nigeria bears 25% of global malaria burden despite concerted efforts towards its control and elimination. The emergence of drug resistance to first line drugs, artemisinin combination therapies (ACTs), indicates an urgent need for continuous molecular surveillance of drug resistance especially in high burden countries where drug interventions are heavily relied on. This study describes mutations in Plasmodium falciparum genes associated with drug resistance in malaria; Pfk13, Pfmdr1, PfATPase6 and Pfcrt in isolates obtained from 83 symptomatic malaria patients collected in August 2014, aged 1-61 years old from South-west Nigeria. RESULTS: Two Pfmdr1, N86 and Y184 variants were present at a prevalence of 56% and 13.25% of isolates respectively. There was one synonymous (S679S) and two non-synonymous (M699V, S769M) mutations in the PATPase6 gene, while Pfcrt genotype (CVIET), had a prevalence of 45%. The Pfk13 C580Y mutant allele was suspected by allelic discrimination in two samples with mixed genotypes although this could not be validated with independent isolation or additional methods. Our findings call for robust molecular surveillance of antimalarial drug resistance markers in west Africa especially with increased use of antimalarial drugs as prophylaxis for Covid-19.


Subject(s)
Artemether, Lumefantrine Drug Combination/therapeutic use , Calcium-Transporting ATPases/genetics , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Adolescent , Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Drug Resistance/genetics , Female , Gene Expression , Genotype , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Middle Aged , Molecular Epidemiology , Nigeria/epidemiology , Pandemics/prevention & control , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control
11.
Malar J ; 19(1): 124, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32228592

ABSTRACT

BACKGROUND: Following guidance from the US President's Malaria Initiative, durability monitoring of DawaPlus® 2.0 brand of long-lasting insecticidal net (LLIN) distributed during the 2015/16 mass campaign was set up in three ecologically different states: Zamfara, Ebonyi and Oyo. METHODS: This was a prospective cohort study of representative samples of households from each location, recruited at baseline, 1 to 6 months after the mass campaign. All campaign nets in the households were labelled and followed up over a period of 36 months in Zamfara and Ebonyi and 24 months in Oyo. Primary outcome was the "proportion of nets surviving in serviceable condition" based on attrition and integrity measures and the median survival in years. The outcome for insecticidal durability was determined by bio-assay from sub-samples of campaign nets. RESULTS: A total of 439 households (98% of target) and 1096 campaign nets (106%) were included in the study. Definite outcomes could be determined for 92% of the cohort nets in Zamfara, 88% in Ebonyi and 75% in Oyo. All-cause attrition was highest in Oyo with 47% no longer present after 24 months, 53% in Ebonyi and 28% in Zamfara after 36 months. Overall only 1% of all campaign nets were used for other purposes. Estimated survival in serviceable condition of the campaign nets was 80% in Zamfara, 55% in Ebonyi (36 months follow-up) and 75% in Oyo (24 months follow-up) corresponding to median survival of 5.3, 3.3, 3.2 years, respectively. Factors associated with better survival were exposure to social messaging combined with a positive net-care attitude and only adult users. Failing to fold the net when hanging and having children under 5 years of age in the household negatively impacted net survival. Insecticidal effectiveness testing at final survey showed knock-down rates of 50-69%, but 24-h mortality above 95% resulting in 100% optimal performance in Ebonyi and Oyo and 97% in Zamfara. CONCLUSIONS: Results confirm the strong influence of net-use environment and behavioural factors in the physical survival of the same LLIN brand, which can increase the time until 50% of nets are no longer serviceable by up to 2 years.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Insecticides/analysis , Mosquito Control , Nigeria , Prospective Studies
12.
Trop Parasitol ; 9(1): 36-44, 2019.
Article in English | MEDLINE | ID: mdl-31161091

ABSTRACT

BACKGROUND: The National Malaria Eradication Program and international agencies are keen on scaling up the use of malaria rapid diagnostic tests (mRDTs) and artemisinin-based combination therapies (ACTs) for effective diagnosis and treatment of the disease. However, poor diagnostic skills and inappropriate treatment are limiting the efforts. In Nigeria, a large proportion of infected patients self-diagnose and treat while many others seek care from informal drug attendants and voluntary health workers. AIMS: This study describes the impact of training voluntary health workers, drug shop attendants, and mothers on effective case detection and treatment of malaria in Lagos, Nigeria. METHODS: We trained mothers accessing antenatal care, drug shop attendants, and voluntary health workers selected from the three districts of Lagos, on the use of histidine-rich protein-2-based mRDTs and ACTs. Pre- and post-training assessments, focus group discussions (FGDs), and in-depth interviews (IDIs) were carried out. RESULTS: The knowledge, attitude, and skill of the participants to achieve the goal of "test, treat, and track" using mRDT and ACTs were low (11%-55%). There was a low awareness of other non-malaria fevers among mothers. Self-medication was widely practiced (31.3%). FGDs and IDIs revealed that health-care providers administered antimalarials without diagnosis. Training significantly improved participants' knowledge and expertise on the use of mRDTs and ACTs (P = 0.02). The participants' field performance on mRDT use was significantly correlated with their category (bivariate r = 0.51, P = 0.001). There was no statistically significant association between the participants' level of education or previous field experience and their field performance on mRDT (r = 0.12, P = 0.9; χ 2= 38, df = 2 and P = 0.49). CONCLUSION: These findings suggest that training of stakeholders in malaria control improves diagnosis and treatment of malaria. However, a broader scope of training in other settings may be required for an effective malaria control in Nigeria.

13.
J Med Entomol ; 56(3): 817-821, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30753574

ABSTRACT

Pyrethroids and DDT are key insecticides in the control of malaria, yellow fever, and lymphatic filariasis vectors. Knockdown and metabolic resistance mechanisms have been proven to be important in determining the efficacy of insecticides. Here we investigated cytochrome P450 as a resistance mechanism in Anopheles gambiae Giles and Culex quinquefasciatus Say exposed to deltamethrin and DDT. Two- to three-days-old adult female mosquitoes were used for insecticide exposures and PBO synergistic assays using WHO standard guidelines, kits and test papers (DDT 4%, deltamethrin 0.05%, and PBO 4%). Polymerase chain reaction (PCR) assays were used for the identification of the species and for characterization of the kdr allele. Mortality at 24 h post-exposure was 18 and 17% in An. gambiae s.s. exposed to DDT and deltamethrin, respectively; 1 and 5% in Cx. quinquefasciatus exposed to DDT and deltamethrin respectively. Significant (P < 0.01) levels of susceptibility was recorded in mosquitoes pre-exposed to PBO, as KDT50 and 24 h of exposure ranged from 37.6 min to 663.4 min and 27 to 80%, respectively. Presence of a knockdown resistance allele was recorded in An. gambiae s.s., 22.5% for homozygote resistance and 7.5% for heterozygotes, while Cx. quinquefasciatus populations showed no kdr allele despite the high level of resistance to DDT and deltamethrin. Findings from this study indicated that cytochrome P450 mono-oxygenase expression is highly implicated in the resistance phenotype to DDT and pyrethroids in An. gambiae and Cx. quinquefasciatus in the study area.


Subject(s)
Anopheles/drug effects , Culex/drug effects , Cytochrome P-450 Enzyme System/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Animals , Anopheles/enzymology , Anopheles/genetics , Culex/enzymology , Culex/genetics , DDT/pharmacology , Nigeria , Nitriles/pharmacology , Phenotype , Pyrethrins/pharmacology
14.
Parasit Vectors ; 11(1): 497, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30180885

ABSTRACT

BACKGROUND: Entomological indices within a specific area vary with climatic factors such as rainfall, temperature and relative humidity. Contributions of such weather parameter fluctuations to the changes in entomological data obtained within a community under implementation of a promising vector control intervention should be taken into account. This study reports on inter-annual changes in entomological indices within two rural communities, one of which was under insecticide-treated durable wall lining (DL) installation. METHODS: Community-wide DL installation was followed by monthly meteorological data and pyrethrum spray mosquito collections for 2 years in intervention and a similar neighbouring community (control). Human blood meal and sporozoite ELISA tests were conducted on female mosquitoes collected alongside PCR identification of subsamples. Mosquitoes collected at the intervention site were tested in cone susceptibility assays against subsamples of installed DL materials collected on a 6-monthly basis for 2 years. Deltamethrin susceptibility of Anopheles mosquitoes from the intervention site was determined before and after DL installation. Entomological indices in the first and second years were compared within each site. RESULTS: Rainfall in the study area increased significantly (t = -3.45, df = 11, P = 0.005) from first to second year. Correlation between rainfall and Anopheles densities in both sites were significant (r = 0.681, P < 0.001). Mosquitoes collected at the intervention site were susceptible (100%) to deltamethrin at baseline but resistant (92%) in the second year. However, subsamples of installed DL materials remained effective (100% mortality) against Anopheles mosquitoes from the intervention site throughout the 6-monthly cone assay exposures. Monthly pyrethrum spray collections showed significant increase in Anopheles densities from first to second year in the control (6.36 ± 1.61 vs 7.83 ± 2.39; t = -3.47, df = 11, P = 0.005), but not in the intervention (2.83 ± 1.86 vs 4.23 ± 3.31; t = -2.03, df = 11, P = 0.067) community. However, mean annual mosquito man-biting rates increased significantly in both intervention (0.88 ± 0.18 vs 1.06 ± 0.38; F(1, 10) = 9.50, P = 0.012) and control (1.45 ± 0.31 vs 1.61 ± 0.34; F(1, 10) = 10.18, p = 0.010) sites along with increase (≥ 1.6 times) in sporozoite rates within intervention (0-2.13%) and control (2.56-4.04%) communities. CONCLUSIONS: The slight increase in vector density, induced by significant increase in rainfall, led to increased sporozoite infection and significantly increased man-biting rates within the intervention site. These reveal the need for incorporation of integrated vector management strategies to complement DL installation especially in regions with high rainfall and mosquito density. Promising vector control tools such as DL should be evaluated on a long-term basis to reveal the possible effect of weather parameters on control performance and also allow for holistic recommendations.


Subject(s)
Anopheles/drug effects , Construction Materials , Insecticides/pharmacology , Malaria/prevention & control , Weather , Animals , Anopheles/physiology , Blood , Entomology/statistics & numerical data , Humans , Insecticide Resistance , Malaria/epidemiology , Malaria/transmission , Meals , Mosquito Control/methods , Mosquito Control/statistics & numerical data , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Nigeria/epidemiology , Pyrethrins/pharmacology , Rain , Rural Population/statistics & numerical data , Sporozoites/drug effects , Sporozoites/isolation & purification
15.
Malariaworld J ; 6: 6, 2015.
Article in English | MEDLINE | ID: mdl-38779622

ABSTRACT

Background: The accuracy of malaria diagnosis by microscopy has been a challenge in health facilities in Nigeria due to poor competence of microscopists and inability to report on malaria species other than Plasmodium falciparum. Short microscopy courses were conducted to improve the skills of laboratory personnel to perform malaria microscopy in public health facilities in Nigeria. Materials and Methods: Seven-day malaria microscopy courses were conducted annually between 2011 and 2013 for microscopists in public health facilities. The training courses contained theoretical and practical sessions. Impact of the training was evaluated by practical and theoretical pre- and post-training assessments on malaria slide reading, parasite enumeration and basic malariology. Results: The 102 participants who completed the training consisted of medical laboratory scientists (62; 60.8%), medical laboratory technicians (24; 23.5%) and other healthcare workers (16; 15.7%). The knowledge of basic malariology (theory) at pre- and post-tests were 34% (95% CI 31.7-36.3%) and 74.9% (95% CI 71.8-78.0%), respectively (P<0.001). The mean slide reading detection, species and counting agreements in pre-training assessment were 48.9%, 27.9% and 0%, respectively, and in post-training 56.8%, 39.2% and 25%, respectively. The mean species agreements in picture test pre- and post-training were 21.9% and 55.1%, respectively. There were significant differences (P<0.05) in the median pre-test scores in picture tests and basic malariology of the three categories of participants but not in malaria slide reading and parasite counting tests. However, post-training, a significant difference in test scores of the three categories of participants was recorded only for basic malariology (P=0.0003). Conclusions: The 7-day malaria microscopy courses significantly increased the knowledge and microscopy skills of the trainees and were sufficient to bridge the significant difference in baseline microscopy skills of the different categories of trainees that participated in the training courses.

16.
Malar J ; 13: 493, 2014 Dec 13.
Article in English | MEDLINE | ID: mdl-25496185

ABSTRACT

BACKGROUND: Genetic diversity studies provide evidence of Plasmodium falciparum differentiation that could affect fitness and adaptation to drugs and target antigens for vaccine development. This study describes the genetic structure of P. falciparum populations in urban and rural sites from southwestern Nigeria. METHODOLOGY: Ten neutral microsatellite loci were genotyped in 196 P. falciparum infections from three localities: Aramoko-Ekiti, a rural community; Lekki, an urban location and Badagry, a peri-urban border settlement. Analysis was performed on the genetic diversity, linkage disequilibrium, population structure and inter-population differentiation. RESULTS: Allelic diversity values were similar across all populations, with mean expected heterozygosity (HE) values between 0.65 and 0.79. No matching multilocus haplotypes were found and analysis of multilocus LD showed no significant index of association. Genetic differentiation between populations was low (ΦPT = 0.017). CONCLUSION: The absence of detectable population structure of P. falciparum in southwestern Nigeria is evident in the lack of significant differentiation between populations separated by about 200 km. This implies that a fairly uniform malaria control strategy may be effective over a wide geographic range in this highly endemic region. However, more wide-scale survey across the country will be required to inform malaria control in this large and densely populated endemic region.


Subject(s)
Genetic Variation , Microsatellite Repeats , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Genotype , Humans , Linkage Disequilibrium , Malaria, Falciparum/parasitology , Nigeria , Plasmodium falciparum/isolation & purification , Rural Population , Urban Population
17.
Parasit Vectors ; 7: 236, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24886399

ABSTRACT

BACKGROUND: PermaNet® 3.0 is an insecticide synergist-combination long-lasting insecticidal net designed to have increased efficacy against malaria vectors with metabolic resistance, even when combined with kdr. The current study reports on the impact of this improved tool on entomological indices in an area with pyrethroid-resistant malaria vectors in Nigeria. METHODS: Baseline entomological indices across eight villages in Remo North LGA of Ogun State provided the basis for selection of three villages (Ilara, Irolu and Ijesa) for comparing the efficacy of PermaNet® 3.0 (PN3.0), PermaNet® 2.0 (PN2.0) and untreated polyester nets as a control (UTC). In each case, nets were distributed to cover all sleeping spaces and were evaluated for insecticidal activity on a 3-monthly basis. Collection of mosquitoes was conducted monthly via window traps and indoor resting catches. The arithmetic means of mosquito catches per house, entomological inoculation rates before and during the intervention were compared as well as three other outcome parameters: the mean mosquito blood feeding rate, mean mortality and mean parity rates. RESULTS: Anopheles gambiae s.l. was the main malaria vector in the three villages, accounting for >98% of the Anopheles population and found in appreciable numbers for 6-7 months. Deltamethrin, permethrin and lambdacyhalothrin resistance were confirmed at Ilara, Irolu and Ijesa. The kdr mutation was the sole resistance mechanism at Ilara, whereas kdr plus P450-based metabolic mechanisms were detected at Irolu and Ijesa. Bioassays repeated on domestically used PN 2.0 and PN 3.0 showed persistent optimal (100%) bio-efficacy for both net types after the 3rd, 6th, 9th and 12th month following net distribution. The use of PN 3.0 significantly reduced mosquito densities with a 'mass killing' effect inside houses. Households with PN 3.0 also showed reduced blood feeding as well as lower mosquito parity and sporozoite rates compared to the PN 2.0 and the UTC villages. A significant reduction in the entomological inoculation rate was detected in both the PN 2.0 village (75%) and PN 3.0 village (97%) post LLIN-distribution and not in the UTC village. CONCLUSION: The study confirms the efficacy of PN 3.0 in reducing malaria transmission compared to pyrethroid-only LLINs in the presence of malaria vectors with P450-based metabolic- resistance mechanisms.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/pharmacology , Malaria/prevention & control , Pyrethrins/pharmacology , Animals , Data Collection , Family Characteristics , Feeding Behavior , Gene Expression Regulation , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/drug effects , Malaria/epidemiology , Mutation , Nigeria/epidemiology , Population Density , Surveys and Questionnaires , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...