Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 53: 110146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375141

ABSTRACT

African locust bean (Parkia biglobosa) is a multipurpose leguminous tree species of nutritional and pharmacological value. The plant is widely distributed in Africa and across Nigeria's major agroecological areas (AEAs). Amidst declining cultivation and production, P. biglobosa is genetically threatened in its natural habitats due to overexploitation, deforestation, wildfires and lack of improved tree management practices. Consequently, concerted research efforts directed towards germplasm collection and assessment of genetic relationships are imperative for conserving its genetic resources, sustainable management and selecting promising landraces for breeding programmes. The dataset presents rbcL intraspecific genetic diversity and population structure of 62 P. biglobosa landraces in Nigeria. A relatively high level of diversity and a low degree of nucleotide variability was observed among the landraces. Relatively high values of 642 total allele sites, 601 polymorphic sites, 504 parsimony information sites, 883 total number mutations, 9 haplotypes and 0.55 gene diversity were recorded for the sequence dataset. Low values of 0.35 nucleotide diversity and 5 InDels events were also recorded for the dataset. The gene flow in this dataset demonstrated an extensive exchange of genes between the three populations of P. biglobosa, which influenced the level of genetic differentiation (Gst) between the populations. Significantly low Gst (-0.01) was recorded between the Guinea and Sudan savannah populations, a moderate value (0.03) was recorded between the Sudan savannah and Rainforest populations and a higher Gst value (0.05) was recorded between the Guinea and Rainforest populations. The dataset highlights potential evolutionary dynamics that might influence variations relevant to the breeding and conservation of P. biglobosa in Nigeria and across its range in West and Central Africa.

2.
Heliyon ; 7(11): e08481, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34901510

ABSTRACT

Globally, climate change is a major factor that contributes significantly to food and nutrition insecurity, limiting crop yield and availability. Although efforts are being made to curb food insecurity, millions of people still suffer from malnutrition. For the United Nations (UN) Sustainable Development Goal of Food Security to be achieved, diverse cropping systems must be developed instead of relying mainly on a few staple crops. Many orphan legumes have untapped potential that can be of significance for developing improved cultivars with enhanced tolerance to changing climatic conditions. One typical example of such an orphan crop is Sphenostylis stenocarpa Hochst. Ex A. Rich. Harms, popularly known as African yam bean (AYB). The crop is an underutilised tropical legume that is climate-resilient and has excellent potential for smallholder agriculture in sub-Saharan Africa (SSA). Studies on AYB have featured morphological characterisation, assessment of genetic diversity using various molecular markers, and the development of tissue culture protocols for rapidly multiplying propagules. However, these have not translated into varietal development, and low yields remain a challenge. The application of suitable biotechnologies to improve AYB is imperative for increased yield, sustainable utilisation and conservation. This review discusses biotechnological strategies with prospective applications for AYB improvement. The potential risks of these strategies are also highlighted.

3.
Bioinform Biol Insights ; 12: 1177932218816100, 2018.
Article in English | MEDLINE | ID: mdl-30546257

ABSTRACT

Lately, the term "genomics" has become ubiquitous in many scientific articles. It is a rapidly growing aspect of the biomedical sciences that studies the genome. The human genome contains a torrent of information that gives clues about human origin, evolution, biological function, and diseases. In a bid to demystify the workings of the genome, the Human Genome Project (HGP) was initiated in 1990, with the chief goal of sequencing the approximately 3 billion nucleotide base pairs of the human DNA. Since its completion in 2003, the HGP has opened new avenues for the application of genomics in clinical practice. This review attempts to overview some milestone discoveries that paved way for the initiation of the HGP, remarkable revelations from the HGP, and how genomics is influencing a paradigm shift in routine clinical practice. It further highlights the challenges facing the implementation of genomic medicine, particularly in Africa. Possible solutions are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...