Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Access Microbiol ; 4(3): 000324, 2022.
Article in English | MEDLINE | ID: mdl-35693465

ABSTRACT

Vibrio cholerae is a biofilm-forming pathogen with various virulence phenotypes and antimicrobial resistance traits. Phenotypic characteristics play a critical role in disease transmission and pathogenesis. The current study elucidated antibiofilm formation activity, profiled antibiotic-resistant genes and virulence factors of toxigenic Vibrio cholerae isolates from the cholera outbreak in Kisumu County, Kenya. Vibrio cholerae O1 isolates collected during the 2017 cholera outbreak in Kisumu County, Kenya, were utilized. Biofilm and virulence factors were profiled using standard procedures. The study confirmed 100 isolates as Vibrio cholerae , with 81 of them possessing cholera toxin gene (ctxA). Additionally, 99 of the isolates harboured the toxR gene. The study further revealed that 81 and 94 of the isolates harboured the class I integron (encoded by inDS gene) and integrating conjugative element (ICE), respectively. Antibiotic resistance assays confirmed tetracycline resistance genes as the most abundant (97 isolates). Among them were seven isolates resistant to commonly used antibiotics. The study further screened the isolates for antibiofilm formation using various antibiotics. Unlike the four strains (03/17-16, 02/17-09, 04/17-13), three of the strains (04/17-07, 06/17-14 and 05/17-03) did not form biofilms. Further, all the seven isolates that exhibited extensive antibiotic resistance produced haemolysin while 71.42%, 85.71 and 71.42 % of them produced protease, phospholipases and lipase, respectively. This study provides and in-depth understanding of essential features that were possibly responsible for V. cholerae outbreak. Understanding of these features is critical in the development of strategies to combat future outbreaks.

2.
Afr J Prim Health Care Fam Med ; 12(1): e1-e6, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33354982

ABSTRACT

BACKGROUND: Multiple drug resistance has become a major threat to the treatment of cholera. Recent studies in Kenya have described the epidemiology, especially the risk factors, of cholera; however, there is little information on the phenotypic and drug susceptibility patterns of Vibrio cholerae (V. cholerae) in outbreaks that in the recent past have occurred in western Kenya. AIM: To characterise and determine the antibiotics' susceptibility profiling of toxigenic V. cholerae isolates from Kisumu County. SETTING: The project was conducted in Kisumu County, Kenya. METHODS: A total of 119 V. cholerae O1, biotype El Tor, isolates collected during 2017 cholera outbreak in Kisumu County were used for this study. The samples were cultured on thiosulphate-citrate-bile salts sucrose (TCBS) agar and biochemical tests were carried out using standard procedures. Susceptibility tests were conducted by using various conventional antibiotics against standard procedures. RESULTS: Of the 119 isolates, 101 were confirmed to be V. cholerae belonging to serotypes Inaba and Ogawa, with Inaba being the predominant serotype (73.95%). The isolates were susceptible to ciprofloxacin (100%), ofloxacin (100%), gentamycin (100%), doxycycline (99%), ceftriaxone (99%) and streptomycin (96.04%) antimicrobials, and resistant to erythromycin (53.47%), amoxicillin (64.4%), nalidixic acid (83.2%) and ampicillin (89.11%), with high resistance to cotrimoxazole (99%) and tetracycline (97%). CONCLUSION: Vibrio cholerae was resistant to multiple antibiotics, including those commonly used in the management of cholera. Taken together, there is a need to carry out regular surveillance on antimicrobial drug resistance during outbreaks.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cholera/microbiology , Drug Resistance, Bacterial , Drug Resistance, Multiple , Vibrio cholerae O1/drug effects , Anti-Bacterial Agents/therapeutic use , Cholera/drug therapy , Disease Outbreaks , Humans , Kenya , Microbial Sensitivity Tests , Phenotype , Serogroup , Spatial Analysis , Vibrio cholerae O1/classification , Vibrio cholerae O1/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...