Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc SPIE Int Soc Opt Eng ; 79102011 Feb 11.
Article in English | MEDLINE | ID: mdl-23447411

ABSTRACT

Far-field super-resolution microscopy is a rapidly emerging method that is opening up opportunities for biological imaging beyond the optical diffraction limit. We have implemented a Stimulated Emission Depletion (STED) microscope to image single dye, cell, and tissue samples with 50-80 nm resolution. First, we compare the STED performance imaging single molecules of several common dyes and report a novel STED dye. Then we apply STED to image planar cell polarity protein complexes in intact fixed Drosophila tissue for the first time. Finally, we present a preliminary study of the centrosomal protein Cep164 in mammalian cells. Our images suggest that Cep164 is arranged in a nine-fold symmetric pattern around the centriole, consistent with findings suggested by cryoelectron tomography. Our work demonstrates that STED microscopy can be used for superresolution imaging in intact tissue and provides ultrastructural information in biological samples as an alternative to immuno-electron microscopy.

2.
Dev Biol ; 303(1): 16-28, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17134692

ABSTRACT

The proper number of cells in developing tissues is achieved by coordinating cell division with apoptosis. In Drosophila, the adult wing is derived from wing imaginal discs, which undergo a period of growth and proliferation during larval stages without much programmed cell death. In this report, we demonstrate that the Drosophila casein kinase Iepsilon/delta, known as Discs overgrown (Dco), is required for maintaining this low level of apoptosis. Expression of dco can suppress the apoptotic activity of Head involution defective (Hid) in the developing eye. Loss of dco in the wing disc results in a dramatic reduction in expression of the caspase inhibitor DIAP1 and a concomitant activation of caspases. The regulation of DIAP1 by Dco occurs by a post-transcriptional mechanism that is independent of hid. Mutant clones of dco are considerably smaller than controls even when apoptosis is inhibited, suggesting that Dco promotes cell division/growth in addition to its role in cell survival. The dco phenotype cannot be explained by defects Wingless (Wg) signaling. We propose that Dco coordinates tissue size by stimulating cell division/growth and blocking apoptosis via activation of DIAP1 expression.


Subject(s)
Apoptosis/physiology , Casein Kinase 1 epsilon/metabolism , Cell Survival/physiology , Drosophila Proteins/metabolism , Drosophila/embryology , Eye/embryology , Inhibitor of Apoptosis Proteins/metabolism , RNA Interference/physiology , Wings, Animal/embryology , Animals , Apoptosis/genetics , Cell Survival/genetics , DNA Primers , Drosophila/enzymology , Immunohistochemistry , In Situ Hybridization , In Situ Nick-End Labeling , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...