Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Hepatol ; 77(6): 1631-1641, 2022 12.
Article in English | MEDLINE | ID: mdl-35988690

ABSTRACT

BACKGROUND & AIMS: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS: In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY: Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Stem Cells , Signal Transduction , Carcinogenesis , RNA , Bile Ducts, Intrahepatic , Forkhead Transcription Factors
2.
EMBO Mol Med ; 14(8): e15653, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35785521

ABSTRACT

Irradiation-induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA-seq analysis of whole skin-derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence-associated IL-6 and IL-1 signaling, together with IL-17 upregulation and CCR6+ -mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation-induced IL-6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL-6-/- or IL-1R-/- mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6-mediated immune cell migration in CCR6-/- mice. Moreover, IL-6 deficiency strongly reduced IL-17, IL-22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL-6, IL-17, CCL3, and MHC upregulation, suggesting that proximity-dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T-cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.


Subject(s)
Radiodermatitis , Receptors, CCR6 , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-6/genetics , Mice , Receptors, CCR6/genetics , Receptors, CCR6/metabolism , Transcriptome
3.
Cancer Res ; 81(18): 4766-4777, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34117031

ABSTRACT

Hepatocellular carcinoma (HCC) typically develops on a background of chronic hepatitis for which the proinflammatory cytokine IL6 is conventionally considered a crucial driving factor. Paradoxically, IL6 also acts as a hepatoprotective factor in chronic liver injury. Here we used the multidrug-resistant gene 2 knockout (Mdr2-/-) mouse model to elucidate potential roles of IL6 in chronic hepatitis-associated liver cancer. Long-term analysis of three separate IL6/Stat3 signaling-deficient Mdr2-/- strains revealed aggravated liver injury with increased dysplastic nodule formation and significantly accelerated tumorigenesis in all strains. Tumorigenesis in the IL6/Stat3-perturbed models was strongly associated with enhanced macrophage accumulation and hepatosteatosis, phenotypes of nonalcoholic steatohepatitis (NASH), as well as with significant reductions in senescence and the senescence-associated secretory phenotype (SASP) accompanied by increased hepatocyte proliferation. These findings reveal a crucial suppressive role for IL6/Stat3 signaling in chronic hepatitis-associated hepatocarcinogenesis by impeding protumorigenic NASH-associated phenotypes and by reinforcing the antitumorigenic effects of the SASP. SIGNIFICANCE: These findings describe a context-dependent role of IL6 signaling in hepatocarcinogenesis and predict that increased IL6-neutralizing sgp130 levels in some patients with NASH may herald early HCC development.See related commentary by Huynh and Ernst, p. 4671.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cellular Senescence , Fatty Liver/etiology , Fatty Liver/metabolism , Interleukin-6/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Biomarkers , Cell Transformation, Neoplastic/genetics , Cellular Senescence/genetics , Disease Models, Animal , Disease Progression , Fatty Liver/pathology , Female , Immunohistochemistry , Interleukin-6/genetics , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Knockout , Mice, Transgenic , ATP-Binding Cassette Sub-Family B Member 4
4.
Front Surg ; 8: 605675, 2021.
Article in English | MEDLINE | ID: mdl-34055865

ABSTRACT

Background: Most of the ischemia-reperfusion injury (IR-I) occurs during reperfusion and is mediated by the immune system. In this study we determined whether immunomodulation with hyper-Interleukin-6 (a recombinant designer cytokine composed of interleukin-6 linked to its soluble receptor) is protective against IR-I in mice kidneys. Methods: Hyper-Interleukin-6 (HIL-6) was administered by in vivo plasmid DNA transfection to 10 male mice. Twenty-four hours later, unilateral nephrectomy was done. IR-I immediately followed by closure of the remaining kidney vascular pedicle for 40 min. Seven mice transfected with non-coding control plasmid served as the control group. The functional and morphological effects of IR-I and its effect on mice longevity were explored. This was done by serial blood tests and by histopathology done upon sacrifice of the animals at post-operative day 7. Findings: Mice pretreated with HIL-6 had a mean creatinine level at post-operative day 1 of 35.45 ± 4.03 µmol/l and mean Urea level was 14.18 ± 2.69 mmol/l, whereas mean creatinine was 89.33 ± 69.27 µmol/l (P = 0.025), and mean urea was 38.17 ± 20.77 mmol/l (P = 0.0024) in the control group. Histological changes in the control group included inflammatory infiltration, tubular damage, and architectural distortion. These were not seen in the treatment group. Seven days post-operatively the survival rate of treated mice was 100% compared to 50% in the control group (P = 0.015). Interpretation: In this single kidney mouse model, pretreatment with HIL-6 administration effectively protected against IR-I both morphologically and functionally. Further studies are needed to better understand the mechanism and feasibility of using this immunomodulator.

5.
Oncogene ; 40(1): 127-139, 2021 01.
Article in English | MEDLINE | ID: mdl-33093654

ABSTRACT

The oncofetal long noncoding RNA (lncRNA) H19 is postnatally repressed in most tissues, and re-expressed in many cancers, including hepatocellular carcinoma (HCC). The role of H19 in carcinogenesis is a subject of controversy. We aimed to examine the role of H19 in chronic inflammation-mediated hepatocarcinogenesis using the Mdr2/Abcb4 knockout (Mdr2-KO) mouse, a well-established HCC model. For this goal, we have generated Mdr2-KO/H19-KO double knockout (dKO) mice and followed spontaneous tumor development in the dKO and control Mdr2-KO mice. Cellular localization of H19 and effects of H19 loss in the liver were determined in young and old Mdr2-KO mice. Tumor incidence and tumor load were both significantly decreased in the liver of dKO versus Mdr2-KO females. The expression levels of H19 and Igf2 were variable in nontumor liver tissues of Mdr2-KO females and were significantly downregulated in most matched tumors. In nontumor liver tissue of aged Mdr2-KO females, H19 was expressed mainly in hepatocytes, and hepatocyte proliferation was increased compared to dKO females. At an early age, dKO females displayed lower levels of liver injury and B-cell infiltration, with higher percentage of binuclear hepatocytes. In human samples, H19 expression was higher in females, positively correlated with cirrhosis (in nontumor liver samples) and negatively correlated with CTNNB1 (beta-catenin) mutations and patients' survival (in tumors). Our data demonstrate that the lncRNA H19 is pro-oncogenic during the development of chronic inflammation-mediated HCC in the Mdr2-KO mouse model, mainly by increasing liver injury and decreasing hepatocyte polyploidy in young mice.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , Carcinoma, Hepatocellular/pathology , Fibrosis/genetics , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , beta Catenin/genetics , Animals , Carcinoma, Hepatocellular/genetics , Female , Fibrosis/complications , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Male , Mice , Mice, Knockout , Sex Characteristics , Tumor Burden , Up-Regulation , ATP-Binding Cassette Sub-Family B Member 4
6.
Front Immunol ; 11: 585502, 2020.
Article in English | MEDLINE | ID: mdl-33329563

ABSTRACT

Deciphering the mechanisms by which Plasmodium parasites develop inside hepatocytes is an important step toward the understanding of malaria pathogenesis. We propose that the nature and the magnitude of the inflammatory response in the liver are key for the establishment of the infection. Here, we used mice deficient in the multidrug resistance-2 gene (Mdr2-/-)-encoded phospholipid flippase leading to the development of liver inflammation. Infection of Mdr2-/- mice with Plasmodium berghei ANKA (PbANKA) sporozoites (SPZ) resulted in the blockade of hepatic exo-erythrocytic forms (EEFs) with no further development into blood stage parasites. Interestingly, cultured primary hepatocytes from mutant and wild-type mice are equally effective in supporting EEF development. The abortive infection resulted in a long-lasting immunity in Mdr2-/- mice against infectious SPZ where neutrophils and IL-6 appear as key effector components along with CD8+ and CD4+ effector and central memory T cells. Inflammation-induced breakdown of liver tolerance promotes anti-parasite immunity and provides new approaches for the design of effective vaccines against malaria disease.


Subject(s)
Hepatitis/immunology , Hepatocytes/parasitology , Malaria , ATP Binding Cassette Transporter, Subfamily B/deficiency , Animals , Female , Hepatocytes/immunology , Inflammation/immunology , Liver/immunology , Liver/parasitology , Malaria/immunology , Malaria/parasitology , Mice , Plasmodium berghei , Sporozoites , ATP-Binding Cassette Sub-Family B Member 4
7.
Proc Natl Acad Sci U S A ; 117(35): 21420-21431, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817494

ABSTRACT

One of the emerging hallmarks of cancer illustrates the importance of metabolic reprogramming, necessary to synthesize the building blocks required to fulfill the high demands of rapidly proliferating cells. However, the proliferation-independent instructive role of metabolic enzymes in tumor plasticity is still unclear. Here, we provide evidence that glutathione peroxidase 8 (GPX8), a poorly characterized enzyme that resides in the endoplasmic reticulum, is an essential regulator of tumor aggressiveness. We found that GPX8 expression was induced by the epithelial-mesenchymal transition (EMT) program. Moreover, in breast cancer patients, GPX8 expression significantly correlated with known mesenchymal markers and poor prognosis. Strikingly, GPX8 knockout in mesenchymal-like cells (MDA-MB-231) resulted in an epithelial-like morphology, down-regulation of EMT characteristics, and loss of cancer stemness features. In addition, GPX8 knockout significantly delayed tumor initiation and decreased its growth rate in mice. We found that these GPX8 loss-dependent phenotypes were accompanied by the repression of crucial autocrine factors, in particular, interleukin-6 (IL-6). In these cells, IL-6 bound to the soluble receptor (sIL6R), stimulating the JAK/STAT3 signaling pathway by IL-6 trans-signaling mechanisms, so promoting cancer aggressiveness. We observed that in GPX8 knockout cells, this signaling mechanism was impaired as sIL6R failed to activate the JAK/STAT3 signaling pathway. Altogether, we present the GPX8/IL-6/STAT3 axis as a metabolic-inflammatory pathway that acts as a robust regulator of cancer cell aggressiveness.


Subject(s)
Breast Neoplasms/enzymology , Interleukin-6/metabolism , Janus Kinases/metabolism , Peroxidases/metabolism , STAT3 Transcription Factor/metabolism , Animals , Breast Neoplasms/mortality , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype , Signal Transduction
8.
Gastroenterology ; 159(3): 999-1014.e9, 2020 09.
Article in English | MEDLINE | ID: mdl-32450149

ABSTRACT

BACKGROUND & AIMS: Development of nonalcoholic steatohepatitis (NASH) is associated with reductions in hepatic microRNA122 (MIR122); the RAR related orphan receptor A (RORA) promotes expression of MIR122. Increasing expression of RORA in livers of mice increases expression of MIR122 and reduces lipotoxicity. We investigated the effects of a RORA agonist in mouse models of NASH. METHODS: We screened a chemical library to identify agonists of RORA and tested their effects on a human hepatocellular carcinoma cell line (Huh7). C57BL/6 mice were fed a chow or high-fat diet (HFD) for 4 weeks to induce fatty liver. Mice were given hydrodynamic tail vein injections of a MIR122 antagonist (antagomiR-122) or a control antagomiR once each week for 3 weeks while still on the HFD or chow diet, or intraperitoneal injections of the RORA agonist RS-2982 or vehicle, twice each week for 3 weeks. Livers, gonad white adipose, and skeletal muscle were collected and analyzed by reverse-transcription polymerase chain reaction, histology, and immunohistochemistry. A separate group of mice were fed an atherogenic diet, with or without injections of RS-2982 for 3 weeks; livers were analyzed by immunohistochemistry, and plasma was analyzed for levels of aminotransferases. We analyzed data from liver tissues from patients with NASH included in the RNA-sequencing databases GSE33814 and GSE89632. RESULTS: Injection of mice with antagomiR-122 significantly reduced levels of MIR122 in plasma, liver, and white adipose tissue; in mice on an HFD, antagomiR-122 injections increased fat droplets and total triglyceride content in liver and reduced ß-oxidation and energy expenditure, resulting in significantly more weight gain than in mice given the control microRNA. We identified RS-2982 as an agonist of RORA and found it to increase expression of MIR122 promoter activity in Huh7 cells. In mice fed an HFD or atherogenic diet, injections of RS-2982 increased hepatic levels of MIR122 precursors and reduced hepatic synthesis of triglycerides by reducing expression of biosynthesis enzymes. In these mice, RS-2982 significantly reduced hepatic lipotoxicity, reduced liver fibrosis, increased insulin resistance, and reduced body weight compared with mice injected with vehicle. Patients who underwent cardiovascular surgery had increased levels of plasma MIR122 compared to its levels before surgery; increased expression of plasma MIR122 was associated with increased levels of plasma free fatty acids and levels of RORA. CONCLUSIONS: We identified the compound RS-2982 as an agonist of RORA that increases expression of MIR122 in cell lines and livers of mice. Mice fed an HFD or atherogenic diet given injections of RS-2982 had reduced hepatic lipotoxicity, liver fibrosis, and body weight compared with mice given the vehicle. Agonists of RORA might be developed for treatment of NASH.


Subject(s)
Lipid Regulating Agents/pharmacology , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 1/agonists , Obesity/drug therapy , Animals , Antagomirs/administration & dosage , Benzamides/pharmacology , Benzamides/therapeutic use , Body Weight , Cell Line, Tumor , Datasets as Topic , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Humans , Insulin Resistance , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Lipid Regulating Agents/therapeutic use , Liver/drug effects , Liver/pathology , Male , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/blood , Mutation , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Promoter Regions, Genetic/drug effects , Up-Regulation/drug effects
9.
Kidney Int ; 94(2): 315-325, 2018 08.
Article in English | MEDLINE | ID: mdl-29861060

ABSTRACT

The high serum fibroblast growth factor 23 (FGF23) levels in patients with acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with increased morbidity and mortality. Mice with folic acid-induced AKI had an increase in bone FGF23 mRNA expression together with an increase in serum FGF23 and several circulating cytokines including interleukin-6 (IL-6). Dexamethasone partially prevented the increase in IL-6 and FGF23 in the AKI mice. IL-6 knock-out mice fed an adenine diet to induce CKD failed to increase bone FGF23 mRNA and had a muted increase in serum FGF23 levels, compared with the increases in wild-type mice with CKD. Therefore, IL-6 contributes to the increase in FGF23 observed in CKD. Hydrodynamic tail injection of IL-6/soluble IL-6 receptor (sIL-6R) fusion protein hyper IL-6 (HIL-6) plasmid increased serum FGF23 levels. Circulating sIL-6R levels were increased in both CKD and AKI mice, suggesting that IL-6 increases FGF23 through sIL-6R-mediated trans-signaling. Renal IL-6 mRNA expression was increased in mice with either AKI or CKD, suggesting the kidney is the source for the increased serum IL-6 levels in the uremic state. HIL-6 also increased FGF23 mRNA in calvaria organ cultures and osteoblast-like UMR106 cells in culture, demonstrating a direct effect of IL-6 on FGF23 expression. HIL-6 increased FGF23 promoter activity through STAT3 phosphorylation and its evolutionarily conserved element in the FGF23 promoter. Thus, IL-6 increases FGF23 transcription and contributes to the high levels of serum FGF23 in both acute and chronic kidney disease.


Subject(s)
Acute Kidney Injury/immunology , Fibroblast Growth Factors/metabolism , Interleukin-6/metabolism , Renal Insufficiency, Chronic/immunology , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Adenine/toxicity , Animals , Bone and Bones/pathology , Dexamethasone/therapeutic use , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/immunology , Folic Acid/toxicity , Glucocorticoids/therapeutic use , Humans , Interleukin-6/blood , Interleukin-6/genetics , Interleukin-6/immunology , Kidney/immunology , Kidney/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/immunology , Promoter Regions, Genetic/genetics , RNA, Messenger/metabolism , Receptors, Interleukin-6/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , STAT3 Transcription Factor/metabolism , Transcription, Genetic/immunology
10.
J Immunol ; 199(12): 4078-4090, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29109123

ABSTRACT

Acute liver injury can be secondary to a variety of causes, including infections, intoxication, and ischemia. All of these insults induce hepatocyte death and subsequent inflammation, which can make acute liver injury a life-threatening event. IL-22 is a dual natured cytokine which has context-dependent protective and pathogenic properties during tissue damage. Accordingly, IL-22 was shown to promote liver regeneration upon acute liver damage. However, other studies suggest pathogenic properties of IL-22 during chronic liver injury. IL-22 binding protein (IL-22BP, IL-22Ra2) is a soluble inhibitor of IL-22 that regulates IL-22 activity. However, the significance of endogenous IL-22BP in acute liver injury is unknown. We hypothesized that IL-22BP may play a role in acute liver injury. To test this hypothesis, we used Il22bp-deficient mice and murine models of acute liver damage induced by ischemia reperfusion and N-acetyl-p-aminophenol (acetaminophen) administration. We found that Il22bp-deficient mice were more susceptible to acute liver damage in both models. We used Il22 × Il22bp double-deficient mice to show that this effect is indeed due to uncontrolled IL-22 activity. We could demonstrate mechanistically increased expression of Cxcl10 by hepatocytes, and consequently increased infiltration of inflammatory CD11b+Ly6C+ monocytes into the liver in Il22bp-deficient mice upon liver damage. Accordingly, neutralization of CXCL10 reversed the increased disease susceptibility of Il22bp-deficient mice. In conclusion, our data indicate that IL-22BP plays a protective role in acute liver damage, via controlling IL-22-induced Cxcl10 expression.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/physiopathology , Liver/blood supply , Receptors, Interleukin/physiology , Reperfusion Injury/physiopathology , Animals , Cell Movement , Cells, Cultured , Chemical and Drug Induced Liver Injury/prevention & control , Chemokine CXCL10/antagonists & inhibitors , Chemokine CXCL10/physiology , Constriction , Hepatectomy , Hepatocytes/metabolism , Interleukins/deficiency , Interleukins/metabolism , Ischemia/physiopathology , Liver/physiology , Liver Failure, Acute/etiology , Liver Failure, Acute/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/physiology , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Regeneration , Reperfusion Injury/prevention & control , Interleukin-22
11.
ACS Synth Biol ; 6(12): 2260-2272, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29136368

ABSTRACT

Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E134/S135) and IL-11 (G116/S117) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.


Subject(s)
Immunoglobulin Constant Regions , Interleukin-11 , Interleukin-6 , Recombinant Fusion Proteins , Trans-Splicing , Animals , COS Cells , Chlorocebus aethiops , HEK293 Cells , Humans , Immunoglobulin Constant Regions/biosynthesis , Immunoglobulin Constant Regions/genetics , Interleukin-11/biosynthesis , Interleukin-11/genetics , Interleukin-6/biosynthesis , Interleukin-6/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics
12.
Hepatology ; 65(5): 1600-1611, 2017 05.
Article in English | MEDLINE | ID: mdl-28027584

ABSTRACT

Liver cancer, which typically develops on a background of chronic liver inflammation, is now the second leading cause of cancer mortality worldwide. For patients with liver cancer, surgical resection is a principal treatment modality that offers a chance of prolonged survival. However, tumor recurrence after resection, the mechanisms of which remain obscure, markedly limits the long-term survival of these patients. We have shown that partial hepatectomy in multidrug resistance 2 knockout (Mdr2-/- ) mice, a model of chronic inflammation-associated liver cancer, significantly accelerates hepatocarcinogenesis. Here, we explore the postsurgical mechanisms that drive accelerated hepatocarcinogenesis in Mdr2-/- mice by perioperative pharmacological inhibition of interleukin-6 (IL6), which is a crucial liver regeneration priming cytokine. We demonstrate that inhibition of IL6 signaling dramatically impedes tumorigenesis following partial hepatectomy without compromising survival or liver mass recovery. IL6 blockade significantly inhibited hepatocyte cell cycle progression while promoting a hypertrophic regenerative response, without increasing apoptosis. Mdr2-/- mice contain hepatocytes with a notable persistent DNA damage response (γH2AX, 53BP1) due to chronic inflammation. We show that liver regeneration in this microenvironment leads to a striking increase in hepatocytes bearing micronuclei, a marker of genomic instability, which is suppressed by IL6 blockade. CONCLUSION: Our findings indicate that genomic instability derived during the IL6-mediated liver regenerative response within a milieu of chronic inflammation links partial hepatectomy to accelerated hepatocarcinogenesis; this suggests a new therapeutic approach through the usage of an anti-IL6 treatment to extend the tumor-free survival of patients undergoing surgical resection. (Hepatology 2017;65:1600-1611).


Subject(s)
Genomic Instability , Hepatitis, Chronic/complications , Interleukin-6/metabolism , Liver Neoplasms, Experimental/etiology , Liver Regeneration , Animals , Hepatectomy , Hyperplasia , Hypertrophy , Interleukin-6/antagonists & inhibitors , Liver/pathology , Liver Neoplasms, Experimental/metabolism , Mice, Inbred C57BL , Mice, Knockout
13.
Cancer Res ; 76(5): 1170-80, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26759233

ABSTRACT

Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-ßgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy.


Subject(s)
Cellular Senescence , Head and Neck Neoplasms/radiotherapy , Interleukin-6/pharmacology , Salivary Glands/radiation effects , Animals , Apoptosis/radiation effects , DNA Damage , DNA Repair , Female , Histones/analysis , Humans , Mice , Mice, Inbred C57BL , Receptors, Interleukin-6/physiology , Salivary Glands/physiology
14.
Oncotarget ; 7(4): 4860-70, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26695439

ABSTRACT

The long-term prognosis after resection of hepatocellular carcinoma (HCC), which is one of the treatment options for early-stage HCC, remains unsatisfactory as a result of a high incidence of disease recurrence. Recent studies performed in murine models revealed a link between liver regeneration under chronic inflammation and hepatic tumorigenesis. Sorafenib is a potent drug for advanced HCC with multikinase inhibition activity. We propose that inhibition of signal transduction pathways which are activated during hepatectomy, using Sorafenib, will reduce accelerated tumorigenesis. To test this hypothesis, we studied the Mdr2-knockout (KO) mouse strain, a model of inflammation-associated cancer, which underwent partial hepatectomy (PHx) at three months of age, with or without Sorafenib.Here we show that Sorafenib treatment during PHx inhibited different signal transduction pathways at the multikinase levels, but did not result in increased morbidity or mortality. At the early stages after PHx, Sorafenib treatment had no effect on the course of proliferation, apoptosis and DNA repair in the regenerating liver, but resulted in decreased stellate cells activation and inflammatory response. Finally, we show that Sorafenib treatment during PHx at three months of age resulted in decreased fibrosis and tumor formation at 8.5 months.In conclusion our study indicates that short-term Sorafenib treatment during PHx is safe and effective in inhibiting inflammation-associated cancer, and is therefore a potential strategy for recurrence prevention in patients with early-stage HCC treated with PHx.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/physiology , Carcinoma, Hepatocellular/prevention & control , Cell Transformation, Neoplastic/drug effects , Disease Models, Animal , Hepatectomy , Inflammation/complications , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Hepatitis/complications , Immunoenzyme Techniques , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Liver Neoplasms/prevention & control , Liver Regeneration/drug effects , Mice , Mice, Knockout , Niacinamide/pharmacology , Protein Array Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sorafenib , ATP-Binding Cassette Sub-Family B Member 4
15.
Kidney Int ; 87(4): 761-70, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25469848

ABSTRACT

Renal endothelin-converting enzyme (ECE)-1 is induced in experimental diabetes and following radiocontrast administration, conditions characterized by renal hypoxia, hypoxia-inducible factor (HIF) stabilization, and enhanced endothelin synthesis. Here we tested whether ECE-1 might be a HIF-target gene in vitro and in vivo. ECE-1 transcription and expression increased in cultured vascular endothelial and proximal tubular cell lines, subject to hypoxia, to mimosine or cobalt chloride. These interventions are known to stabilize HIF signaling by inhibition of HIF-prolyl hydroxylases. In rats, HIF-prolyl-hydroxylase inhibition by mimosine or FG-4497 increased HIF-1α immunostaining in renal tubules, principally in distal nephron segments. This was associated with markedly enhanced ECE-1 protein expression, predominantly in the renal medulla. A progressive and dramatic increase in ECE-1 immunostaining over time, in parallel with enhanced HIF expression, was also noted in conditional von Hippel-Lindau knockout mice. Since HIF and STAT3 are cross-stimulated, we triggered HIF expression by STAT3 activation in mice, transfected by or injected with a chimeric IL-6/IL-6-receptor protein, and found a similar pattern of enhanced ECE-1 expression. Chromatin immunoprecipitation sequence (ChIP-seq) and PCR analysis in hypoxic endothelial cells identified HIF binding at the ECE-1 promoter and intron regions. Thus, our findings suggest that ECE-1 may be a novel HIF-target gene.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Animals , Cell Hypoxia/physiology , Cells, Cultured , Cobalt/pharmacology , Dioxygenases/antagonists & inhibitors , Endothelin-Converting Enzymes , Human Umbilical Vein Endothelial Cells , Humans , Introns , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Mimosine/pharmacology , Oligonucleotide Array Sequence Analysis , Prolyl-Hydroxylase Inhibitors/pharmacology , Promoter Regions, Genetic , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Transcription, Genetic , von Hippel-Lindau Disease/genetics , von Hippel-Lindau Disease/metabolism
16.
Am J Nephrol ; 39(3): 268-78, 2014.
Article in English | MEDLINE | ID: mdl-24662013

ABSTRACT

BACKGROUND/AIMS: Changes in renal oxygenation and perfusion have been identified as common pathways to the development and progression of renal disease. Recently, the sensitivity of hemodynamic response imaging (HRI) was demonstrated; this is a functional magnetic resonance imaging (MRI) method combined with transient hypercapnia and hyperoxia for the evaluation of renal perfusion and vascular reactivity. The aim of this study was to utilize HRI for the noninvasive evaluation of changes in renal hemodynamics and morphology during acute, chronic and acute-on-chronic renal failures. METHODS: Renal-HRI maps and true fast imaging with steady-state precession (True-FISP) images were used to evaluate renal perfusion, morphology and corticomedullary differentiation (CMD). MR images were acquired on two mouse models of kidney injury: adenine-induced chronic kidney disease (CKD) and rhabdomyolysis-induced acute kidney injury (AKI). Serum urea was measured from these mice in order to determine renal function. RESULTS: Renal-HRI maps revealed a blunted response to hypercapnia and hyperoxia with evolving kidney dysfunction in both models, reflecting hampered renal vascular reactivity and perfusion. True-FISP images showed a high sensitivity to renal morphological changes, with different patterns characterizing each model. Calculated data obtained from HRI and True-FISP during the evolution of renal failure and upon recovery, with and without protective intervention, closely correlated with the degree of renal impairment. CONCLUSIONS: This study suggests the potential combined usage of two noninvasive MRI methods, HRI and True-FISP, for the assessment of renal dysfunction without the potential risk associated with contrast-agents administration. HRI may also serve as a research tool in experimental settings, revealing the hemodynamic changes associated with kidney dysfunction.


Subject(s)
Acute Kidney Injury/pathology , Kidney Diseases/diagnosis , Magnetic Resonance Imaging/methods , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/diagnosis , Adenine/chemistry , Animals , Contrast Media/chemistry , Hemodynamics , Kidney/pathology , Mice , Perfusion , Renal Insufficiency, Chronic/diagnosis , Rhabdomyolysis/complications , Urea/blood
17.
PLoS One ; 8(12): e82571, 2013.
Article in English | MEDLINE | ID: mdl-24340043

ABSTRACT

The toll-like receptor-9 (TLR9) agonist cytosine phosphate guanine (CpG), activates hepatic stellate cells (HSCs) and mediates fibrosis. We investigated the TLR9 effects on lymphocyte/HSCs interactions. Liver fibrosis was induced in wild-type (WT) mice by intra-peritoneal carbon-tetrachloride (CCl4) induction for 6 weeks. Fibrotic groups were intravenously treated by a vehicle versus CpG along last 2 weeks. Compared to vehicle-treated fibrotic WT, the in-vivo CpG-treatment significantly attenuated hepatic fibrosis and inflammation, associated with decreased CD8 and increased NK liver cells. In-vitro, co-cultures with vehicle-treated fibrotic NK cells increased HSCs proliferation (P<0.001) while their CpG-treated counterparts achieved a significant decrease. To investigate the role of lymphocytes, TLR9(-/-) mice induced-hepatic fibrosis were used. Although TLR9(-/-) mice manifested lower fibrotic profile as compared to their wild-type (WT) counterparts, senescence (SA-ß-Gal activity) in the liver and ALT serum levels were significantly greater. In an adoptive transfer model; irradiated WT and TLR9(-/-) recipients were reconstituted with naïve WT or TLR9(-/-) lymphocytes. The adoptive transfer of TLR9(-/-) versus WT lymphocytes led to increased fibrosis of WT recipients. TLR9(-/-) fibrotic recipients reconstituted with TLR9(-/-) or WT lymphocytes showed no changes in hepatic fibrosis severity or ALT serum levels. TLR9 activation had inconsistent effects on lymphocytes and HSCs. The net balance of TLR9 activation in WT, displayed significant anti-fibrotic activity, accompanied by CD8 suppression and increased NK-cells, activity and adherence to HSCs. The pro-fibrotic and pro-inflammatory properties of TLR9(-/-) lymphocytes fail to activate HSCs with an early senescence in TLR9(-/-) mice.


Subject(s)
Carbon Tetrachloride Poisoning/immunology , Cell Communication/immunology , Hepatic Stellate Cells/immunology , Liver Cirrhosis/immunology , Toll-Like Receptor 9/immunology , Adjuvants, Immunologic/pharmacology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/pathology , Cell Communication/drug effects , Cell Communication/genetics , Hepatic Stellate Cells/pathology , Killer Cells, Natural , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mice , Mice, Knockout , Oligodeoxyribonucleotides/pharmacology , Toll-Like Receptor 9/genetics
18.
Breast Cancer Res Treat ; 138(2): 407-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23446809

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signaling pathways. In breast cancer cell lines and xenograft models activated STAT3 participates in breast tumorigenesis, while studies in humans have demonstrated that phosphorylated (tyrosine705)-STAT3 is a marker of good prognosis in breast cancer. In order to resolve this paradox we hypothesized that in clinic, phospho-STAT3 has a predictive role of benefit from adjuvant chemotherapy; therefore the goal of this study was to determine the usefulness of phospho-STAT3 status as a predictor of benefit from adjuvant chemotherapy in breast cancer patients. Immunohistochemical analysis of phospho-STAT3 was performed on a tissue microarray of breast cancer specimens. The expression pattern of phospho-STAT3 was retrospectively correlated with pathological parameters and overall survival in patients who were or were not treated with adjuvant chemotherapy. Of 375 tissue specimens interpretable for phospho-STAT3, 134 (36 %) exhibited positive phospho-STAT3 nuclear expression. Among 234 patients who received adjuvant therapy, those with tumors displaying positive phospho-STAT3 nuclear expression had a better ten-year rate of overall survival than patients with tumors displaying negative phospho-STAT3 nuclear expression (P = 0.001). Among patients who did not received adjuvant chemotherapy, positive phospho-STAT3 nuclear status was not correlated with increased overall survival (P = 0.54). Positive phospho-STAT3 was correlated with improved overall survival only among patients who received adjuvant chemotherapy in a multivariate analysis adjusted for stage, grade, hormonal status, Her2 status, and age, irrespective of the chemotherapy regimen received (hazard ratio for death, 0.35 [95 % CI 0.188-0.667]; P = 0.001). These findings support the role of phospho-STAT3 as a marker of favorable outcome in breast cancer patients treated with adjuvant chemotherapy. Whether phospho-STAT3 has a predictive role of benefit from adjuvant chemotherapy has to be validated on prospective, randomized, controlled studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Protein Processing, Post-Translational , STAT3 Transcription Factor/metabolism , Tyrosine/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Chemotherapy, Adjuvant , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Female , Fluorouracil/therapeutic use , Humans , Kaplan-Meier Estimate , Methotrexate/administration & dosage , Middle Aged , Multivariate Analysis , Phosphorylation , Proportional Hazards Models , Treatment Outcome
19.
Hepatology ; 58(3): 1021-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23526353

ABSTRACT

UNLABELLED: Human hepatocellular carcinoma (HCC) is an inflammation-induced cancer, which is the third-leading cause of cancer mortality worldwide. We investigated the role of the chemokine receptors, CCR5 and CCR1, in regulating inflammation and tumorigenesis in an inflammation-induced HCC model in mice. Multidrug resistance 2 gene (Mdr2)-knockout (Mdr2-KO) mice spontaneously develop chronic cholestatic hepatitis and fibrosis that is eventually followed by HCC. We generated two new strains from the Mdr2-KO mouse, the Mdr2:CCR5 and the Mdr2:CCR1 double knockouts (DKOs), and set out to compare inflammation and tumorigenesis among these strains. We found that in Mdr2-KO mice lacking the chemokine receptor, CCR5 (Mdr2:CCR5 DKO mice), but not CCR1 (Mdr2:CCR1 DKO), macrophage recruitment and trafficking to the liver was significantly reduced. Furthermore, in the absence of CCR5, reduced inflammation was also associated with reduced periductal accumulation of CD24(+) oval cells and abrogation of fibrosis. DKO mice for Mdr2 and CCR5 exhibited a significant decrease in tumor incidence and size. CONCLUSIONS: Our results indicate that CCR5 has a critical role in both the development and progression of liver cancer. Therefore, we propose that a CCR5 antagonist can serve for HCC cancer prevention and treatment.


Subject(s)
Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/physiopathology , Hepatitis, Chronic/complications , Liver Cirrhosis/complications , Liver Neoplasms/etiology , Liver Neoplasms/physiopathology , Receptors, CCR5/physiology , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/physiology , Animals , Carcinoma, Hepatocellular/epidemiology , Chemokine CCL5/physiology , Disease Models, Animal , Disease Progression , Hepatitis, Chronic/genetics , Incidence , Liver/pathology , Liver/physiopathology , Liver Cirrhosis/genetics , Liver Neoplasms/epidemiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR1/deficiency , Receptors, CCR1/genetics , Receptors, CCR1/physiology , Receptors, CCR5/deficiency , Receptors, CCR5/genetics , ATP-Binding Cassette Sub-Family B Member 4
20.
Clin Exp Pharmacol Physiol ; 40(4): 262-72, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23384058

ABSTRACT

In vitro studies suggest that combined activation of hypoxia-inducible factor (HIF) and signal transducer and activator of transcription 3 (STAT3) promotes the hypoxia response. However, their interrelationship in vivo remains poorly defined. The present study investigated the possible relationship between HIF-1 upregulation and STAT3 activation in the rodent kidney in vivo. Activation of HIF-1 and STAT3 was analysed by immunohistochemical staining and western blot analysis in: (i) models of hypoxia-associated kidney injury induced by radiocontrast media or rhabdomyolysis; (ii) following activation of STAT3 by the interleukin (IL)-6-soluble IL-6 receptor complex; or (iii) following HIF-1α stabilization using hypoxic and non-hypoxic stimuli (mimosine, FG-4497, CO, CoCl(2)) and in targeted von Hippel-Lindau-knockout mice. Western blot analysis and immunostaining revealed marked induction of both transcription factors under all conditions tested, suggesting that in vivo STAT3 can trigger HIF and vice versa. Colocalization of HIF-1α and phosphorylated STAT3 was detected in some, but not all, renal cell types, suggesting that in some cells a paracrine mechanism may be responsible for the reciprocal activation of the two transcription factors. Nevertheless, in several cell types spatial concordance was observed under the majority of conditions tested, suggesting that HIF-1 and STAT3 may act as cotranscription factors. These in vivo studies suggest that, in response to renal hypoxic-stress, upregulation of HIF-1 and activation of STAT3 may be both reciprocal and cell type dependent.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/metabolism , Kidney/metabolism , STAT3 Transcription Factor/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Animals , Hypoxia/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Oxygen/pharmacology , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , Von Hippel-Lindau Tumor Suppressor Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...