Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 37(Database issue): D1018-24, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19036787

ABSTRACT

The HuRef Genome Browser is a web application for the navigation and analysis of the previously published genome of a human individual, termed HuRef. The browser provides a comparative view between the NCBI human reference sequence and the HuRef assembly, and it enables the navigation of the HuRef genome in the context of HuRef, NCBI and Ensembl annotations. Single nucleotide polymorphisms, indels, inversions, structural and copy-number variations are shown in the context of existing functional annotations on either genome in the comparative view. Demonstrated here are some potential uses of the browser to enable a better understanding of individual human genetic variation. The browser provides full access to the underlying reads with sequence and quality information, the genome assembly and the evidence supporting the identification of DNA polymorphisms. The HuRef Browser is a unique and versatile tool for browsing genome assemblies and studying individual human sequence variation in a diploid context. The browser is available online at http://huref.jcvi.org.


Subject(s)
Databases, Nucleic Acid , Genetic Variation , Genome, Human , Genomics , Humans , Internet , Software
2.
PLoS Genet ; 4(8): e1000160, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18704161

ABSTRACT

There is much interest in characterizing the variation in a human individual, because this may elucidate what contributes significantly to a person's phenotype, thereby enabling personalized genomics. We focus here on the variants in a person's 'exome,' which is the set of exons in a genome, because the exome is believed to harbor much of the functional variation. We provide an analysis of the approximately 12,500 variants that affect the protein coding portion of an individual's genome. We identified approximately 10,400 nonsynonymous single nucleotide polymorphisms (nsSNPs) in this individual, of which approximately 15-20% are rare in the human population. We predict approximately 1,500 nsSNPs affect protein function and these tend be heterozygous, rare, or novel. Of the approximately 700 coding indels, approximately half tend to have lengths that are a multiple of three, which causes insertions/deletions of amino acids in the corresponding protein, rather than introducing frameshifts. Coding indels also occur frequently at the termini of genes, so even if an indel causes a frameshift, an alternative start or stop site in the gene can still be used to make a functional protein. In summary, we reduced the set of approximately 12,500 nonsilent coding variants by approximately 8-fold to a set of variants that are most likely to have major effects on their proteins' functions. This is our first glimpse of an individual's exome and a snapshot of the current state of personalized genomics. The majority of coding variants in this individual are common and appear to be functionally neutral. Our results also indicate that some variants can be used to improve the current NCBI human reference genome. As more genomes are sequenced, many rare variants and non-SNP variants will be discovered. We present an approach to analyze the coding variation in humans by proposing multiple bioinformatic methods to hone in on possible functional variation.


Subject(s)
Exons , Genetic Variation , Genome, Human , Polymorphism, Single Nucleotide , Gene Frequency , Genetic Diseases, Inborn/genetics , Humans , Male , Mutation , Phenotype , Proteins/genetics , Proteins/metabolism
3.
Genome Res ; 18(8): 1336-46, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18676820

ABSTRACT

In comparison to genotypes, knowledge about haplotypes (the combination of alleles present on a single chromosome) is much more useful for whole-genome association studies and for making inferences about human evolutionary history. Haplotypes are typically inferred from population genotype data using computational methods. Whole-genome sequence data represent a promising resource for constructing haplotypes spanning hundreds of kilobases for an individual. In this article, we propose a Markov chain Monte Carlo (MCMC) algorithm, HASH (haplotype assembly for single human), for assembling haplotypes from sequenced DNA fragments that have been mapped to a reference genome assembly. The transitions of the Markov chain are generated using min-cut computations on graphs derived from the sequenced fragments. We have applied our method to infer haplotypes using whole-genome shotgun sequence data from a recently sequenced human individual. The high sequence coverage and presence of mate pairs result in fairly long haplotypes (N50 length ~ 350 kb). Based on comparison of the sequenced fragments against the individual haplotypes, we demonstrate that the haplotypes for this individual inferred using HASH are significantly more accurate than the haplotypes estimated using a previously proposed greedy heuristic and a simple MCMC method. Using haplotypes from the HapMap project, we estimate the switch error rate of the haplotypes inferred using HASH to be quite low, ~1.1%. Our Markov chain Monte Carlo algorithm represents a general framework for haplotype assembly that can be applied to sequence data generated by other sequencing technologies. The code implementing the methods and the phased individual haplotypes can be downloaded from (http://www.cse.ucsd.edu/users/vibansal/HASH/).


Subject(s)
Algorithms , Genome, Human , Genomics/methods , Haplotypes , Markov Chains , Monte Carlo Method , Computer Simulation , Humans
4.
Nat Biotechnol ; 26(5): 541-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18464787

ABSTRACT

With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.


Subject(s)
Chromosome Mapping/methods , Chromosome Mapping/standards , Databases, Factual/standards , Information Dissemination/methods , Information Storage and Retrieval/standards , Information Theory , Internationality
5.
Bioinformatics ; 24(8): 1035-40, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18321888

ABSTRACT

MOTIVATION: We present an algorithm to identify allelic variation given a Whole Genome Shotgun (WGS) assembly of haploid sequences, and to produce a set of haploid consensus sequences rather than a single consensus sequence. Existing WGS assemblers take a column-by-column approach to consensus generation, and produce a single consensus sequence which can be inconsistent with the underlying haploid alleles, and inconsistent with any of the aligned sequence reads. Our new algorithm uses a dynamic windowing approach. It detects alleles by simultaneously processing the portions of aligned reads spanning a region of sequence variation, assigns reads to their respective alleles, phases adjacent variant alleles and generates a consensus sequence corresponding to each confirmed allele. This algorithm was used to produce the first diploid genome sequence of an individual human. It can also be applied to assemblies of multiple diploid individuals and hybrid assemblies of multiple haploid organisms. RESULTS: Being applied to the individual human genome assembly, the new algorithm detects exactly two confirmed alleles and reports two consensus sequences in 98.98% of the total number 2,033311 detected regions of sequence variation. In 33,269 out of 460,373 detected regions of size >1 bp, it fixes the constructed errors of a mosaic haploid representation of a diploid locus as produced by the original Celera Assembler consensus algorithm. Using an optimized procedure calibrated against 1 506 344 known SNPs, it detects 438 814 new heterozygous SNPs with false positive rate 12%. AVAILABILITY: The open source code is available at: http://wgs-assembler.cvs.sourceforge.net/wgs-assembler/


Subject(s)
Algorithms , Chromosome Mapping/methods , Consensus Sequence/genetics , DNA Mutational Analysis/methods , Genetic Variation/genetics , Genome, Human/genetics , Haploidy , Software , Base Sequence , Gene Frequency/genetics , Humans , Molecular Sequence Data , Sequence Analysis, DNA/methods
6.
PLoS Biol ; 5(10): e254, 2007 Sep 04.
Article in English | MEDLINE | ID: mdl-17803354

ABSTRACT

Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2-206 bp), 292,102 heterozygous insertion/deletion events (indels)(1-571 bp), 559,473 homozygous indels (1-82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.


Subject(s)
Chromosome Mapping , Diploidy , Genome, Human , Sequence Analysis, DNA , Base Sequence , Chromosome Mapping/instrumentation , Chromosome Mapping/methods , Chromosomes, Human , Chromosomes, Human, Y/genetics , Gene Dosage , Genotype , Haplotypes , Human Genome Project , Humans , INDEL Mutation , In Situ Hybridization, Fluorescence , Male , Microarray Analysis , Middle Aged , Molecular Sequence Data , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...