Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
iScience ; 27(2): 108907, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318365

ABSTRACT

SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low µM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.

2.
Bioorg Med Chem ; 30: 115898, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33388594

ABSTRACT

The spread of antibiotic resistance within the ESKAPE group of human pathogenic bacteria poses severe challenges in the treatment of infections and maintenance of safe hospital environments. This motivates efforts to validate novel target proteins within these species that could be pursued as potential targets for antibiotic development. Genetic data suggest that the enzyme FabG, which is part of the bacterial fatty acid biosynthetic system FAS-II, is essential in several ESKAPE pathogens. FabG catalyzes the NADPH dependent reduction of 3-keto-acyl-ACP during fatty acid elongation, thus enabling lipid supply for production and maintenance of the cell envelope. Here we report on small-molecule screening on the FabG enzymes from A. baumannii and S. typhimurium to identify a set of µM inhibitors, with the most potent representative (1) demonstrating activity against six FabG-orthologues. A co-crystal structure with FabG from A. baumannii (PDB:6T65) confirms inhibitor binding at an allosteric site located in the subunit interface, as previously demonstrated for other sub-µM inhibitors of FabG from P. aeruginosa. We show that inhibitor binding distorts the oligomerization interface in the FabG tetramer and displaces crucial residues involved in the interaction with the co-substrate NADPH. These observations suggest a conserved allosteric site across the FabG family, which can be potentially targeted for interference with fatty acid biosynthesis in clinically relevant ESKAPE pathogens.


Subject(s)
Acinetobacter baumannii/enzymology , Alcohol Oxidoreductases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pseudomonas aeruginosa/enzymology , Salmonella typhimurium/enzymology , Alcohol Oxidoreductases/metabolism , Binding Sites/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship
3.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Article in English | MEDLINE | ID: mdl-32690945

ABSTRACT

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Subject(s)
Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Binding Sites , Cell Line , Drug Design , Drug Development , Escherichia coli , Humans , Inorganic Pyrophosphatase/antagonists & inhibitors , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Structure-Activity Relationship
4.
EMBO Mol Med ; 12(3): e10419, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31950591

ABSTRACT

The deoxycytidine analogue cytarabine (ara-C) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits ara-C efficacy by hydrolysing the active triphosphate metabolite ara-CTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1-mediated barrier to ara-C efficacy in primary blasts and mouse models of AML, displaying SAMHD1-dependent synergy with ara-C. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 ara-CTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of ara-C and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML.


Subject(s)
Cytarabine/pharmacology , Leukemia, Myeloid, Acute , Pyrophosphatases/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , SAM Domain and HD Domain-Containing Protein 1/metabolism , Animals , Arabinofuranosylcytosine Triphosphate/metabolism , Mice
5.
SLAS Discov ; 25(2): 118-126, 2020 02.
Article in English | MEDLINE | ID: mdl-31665966

ABSTRACT

The cellular thermal shift assay (CETSA) was introduced in 2013 to investigate drug-target engagement inside live cells and tissues. As with all thermal shift assays, the response measured by CETSA is not simply governed by ligand affinity to the investigated target protein, but the thermodynamics and kinetics of ligand binding and protein unfolding also contribute to the observed protein stabilization. This limitation is commonly neglected in current applications of the method to validate the target of small-molecule probes. Instead, there is an eagerness to make direct comparisons of CETSA measurements with functional and phenotypic readouts from cells at 37 °C. Here, we present a perspective of the early CETSA literature and put the accumulated data into a quantitative context. The analysis includes annotation of ~270 peer-reviewed papers, the majority of which do not consider the underlying biophysical basis of CETSA. We also detail what future technology developments are needed to enable CETSA-based optimization of structure-activity relationships and more appropriate comparisons of these data with functional or phenotypic responses. Finally, we describe ongoing developments in assay formats that allow for CETSA measurements at single-cell resolution, with the aspiration to allow differentiation in cellular target engagement between cells in co-cultures and more complex models, such as organoids and potentially even tissue.


Subject(s)
Biological Assay/trends , Drug Delivery Systems , Drug Discovery , Structure-Activity Relationship , Humans , Kinetics , Ligands , Thermodynamics
7.
J Vis Exp ; (141)2018 11 29.
Article in English | MEDLINE | ID: mdl-30582591

ABSTRACT

Quantitating the interaction of small molecules with their intended protein target is critical for drug development, target validation and chemical probe validation. Methods that measure this phenomenon without modification of the protein target or small molecule are particularly valuable though technically challenging. The cellular thermal shift assay (CETSA) is one technique to monitor target engagement in living cells. Here, we describe an adaptation of the original CETSA protocol, which allows for high throughput measurements while retaining subcellular localization at the single cell level. We believe this protocol offers important advances to the application of CETSA for in-depth characterization of compound-target interaction, especially in heterogeneous populations of cells.


Subject(s)
Cell Adhesion/physiology , High-Throughput Screening Assays , Humans
8.
Biochemistry ; 57(48): 6715-6725, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30418016

ABSTRACT

Evidence of physical interaction with the target protein is essential in the development of chemical probes and drugs. The cellular thermal shift assay (CETSA) allows evaluation of drug binding in live cells but lacks a framework to support quantitative interpretations and comparisons with functional data. We outline an experimental platform for such analysis using human kinase p38α. Systematic variations to the assay's characteristic heat challenge demonstrate an apparent loss of compound potency with an increase in duration or temperature, in line with expectations from the literature for thermal shift assays. Importantly, data for five structurally diverse inhibitors can be quantitatively explained using a simple model of linked equilibria and published binding parameters. The platform further distinguishes between ligand mechanisms and allows for quantitative comparisons of drug binding affinities and kinetics in live cells and lysates. We believe this work has broad implications in the appropriate use of the CETSA for target and compound validation.


Subject(s)
Pharmaceutical Preparations/metabolism , Protein Binding , Biological Assay , Drug Evaluation, Preclinical , Enzyme Stability , HL-60 Cells , Hot Temperature , Humans , Intracellular Space/metabolism , Kinetics , Ligands , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Models, Biological , Protein Denaturation , Protein Kinase Inhibitors/metabolism , Protein Stability , Temperature , Thermodynamics
9.
ACS Chem Biol ; 13(4): 942-950, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29433316

ABSTRACT

A prerequisite for successful drugs is effective binding of the desired target protein in the complex environment of a living system. Drug-target engagement has typically been difficult to monitor in physiologically relevant models, and with current methods, especially, while maintaining spatial information. One recent technique for quantifying drug-target engagement is the cellular thermal shift assay (CETSA), in which ligand-induced protein stabilization is measured after a heat challenge. Here, we describe a CETSA protocol in live A431 cells for p38α (MAPK14), where remaining soluble protein is detected in situ, using high-content imaging in 384-well, microtiter plates. We validate this assay concept using a number of known p38α inhibitors and further demonstrate the potential of this technology for chemical probe and drug discovery purposes by performing a small pilot screen for novel p38α binders. Importantly, this protocol creates a workflow that is amenable to adherent cells in their native state and yields spatially resolved target engagement information measurable at the single-cell level.


Subject(s)
Drug Design , Enzyme Inhibitors/analysis , Hot Temperature , Protein Array Analysis/methods , Protein Stability/radiation effects , Cell Adhesion , Cell Line, Tumor , Humans , Ligands , Methods , Mitogen-Activated Protein Kinase 14/analysis , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors
10.
Nat Commun ; 9(1): 250, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343827

ABSTRACT

With a diverse network of substrates, NUDIX hydrolases have emerged as a key family of nucleotide-metabolizing enzymes. NUDT5 (also called NUDIX5) has been implicated in ADP-ribose and 8-oxo-guanine metabolism and was recently identified as a rheostat of hormone-dependent gene regulation and proliferation in breast cancer cells. Here, we further elucidate the physiological relevance of known NUDT5 substrates and underscore the biological requirement for NUDT5 in gene regulation and proliferation of breast cancer cells. We confirm the involvement of NUDT5 in ADP-ribose metabolism and dissociate a relationship to oxidized nucleotide sanitation. Furthermore, we identify potent NUDT5 inhibitors, which are optimized to promote maximal NUDT5 cellular target engagement by CETSA. Lead compound, TH5427, blocks progestin-dependent, PAR-derived nuclear ATP synthesis and subsequent chromatin remodeling, gene regulation and proliferation in breast cancer cells. We herein present TH5427 as a promising, targeted inhibitor that can be used to further study NUDT5 activity and ADP-ribose metabolism.


Subject(s)
Enzyme Inhibitors/pharmacology , Progestins/metabolism , Pyrophosphatases/antagonists & inhibitors , Signal Transduction/drug effects , Adenosine Diphosphate Ribose/metabolism , Adenosine Triphosphate/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Female , HL-60 Cells , Humans , Molecular Structure , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , RNA Interference , Substrate Specificity
11.
Proc Natl Acad Sci U S A ; 114(30): E6231-E6239, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28701380

ABSTRACT

Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery.


Subject(s)
Drug Discovery/methods , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Biological Availability , Biological Transport , HEK293 Cells , HL-60 Cells , Humans , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protease Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics
13.
Nat Med ; 23(2): 256-263, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28067901

ABSTRACT

The cytostatic deoxycytidine analog cytarabine (ara-C) is the most active agent available against acute myelogenous leukemia (AML). Together with anthracyclines, ara-C forms the backbone of AML treatment for children and adults. In AML, both the cytotoxicity of ara-C in vitro and the clinical response to ara-C therapy are correlated with the ability of AML blasts to accumulate the active metabolite ara-C triphosphate (ara-CTP), which causes DNA damage through perturbation of DNA synthesis. Differences in expression levels of known transporters or metabolic enzymes relevant to ara-C only partially account for patient-specific differential ara-CTP accumulation in AML blasts and response to ara-C treatment. Here we demonstrate that the deoxynucleoside triphosphate (dNTP) triphosphohydrolase SAM domain and HD domain 1 (SAMHD1) promotes the detoxification of intracellular ara-CTP pools. Recombinant SAMHD1 exhibited ara-CTPase activity in vitro, and cells in which SAMHD1 expression was transiently reduced by treatment with the simian immunodeficiency virus (SIV) protein Vpx were dramatically more sensitive to ara-C-induced cytotoxicity. CRISPR-Cas9-mediated disruption of the gene encoding SAMHD1 sensitized cells to ara-C, and this sensitivity could be abrogated by ectopic expression of wild-type (WT), but not dNTPase-deficient, SAMHD1. Mouse models of AML lacking SAMHD1 were hypersensitive to ara-C, and treatment ex vivo with Vpx sensitized primary patient-derived AML blasts to ara-C. Finally, we identified SAMHD1 as a risk factor in cohorts of both pediatric and adult patients with de novo AML who received ara-C treatment. Thus, SAMHD1 expression levels dictate patient sensitivity to ara-C, providing proof-of-concept that the targeting of SAMHD1 by Vpx could be an attractive therapeutic strategy for potentiating ara-C efficacy in hematological malignancies.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cytarabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Monomeric GTP-Binding Proteins/drug effects , Viral Regulatory and Accessory Proteins/pharmacology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antimetabolites, Antineoplastic/therapeutic use , Arabinofuranosylcytosine Triphosphate/metabolism , Child , Child, Preschool , Cytarabine/therapeutic use , Disease Models, Animal , Female , Humans , In Vitro Techniques , Infant , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Molecular Targeted Therapy , Monomeric GTP-Binding Proteins/metabolism , Prognosis , SAM Domain and HD Domain-Containing Protein 1
14.
Assay Drug Dev Technol ; 14(3): 180-93, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27078680

ABSTRACT

Intracerebroventricular injection of angiotensin IV, a ligand of insulin-regulated aminopeptidase (IRAP), has been shown to improve cognitive functions in several animal models. Consequently, IRAP is considered a potential target for treatment of cognitive disorders. To identify nonpeptidic IRAP inhibitors, we adapted an established enzymatic assay based on membrane preparations from Chinese hamster ovary cells and a synthetic peptide-like substrate for high-throughput screening purposes. The 384-well microplate-based absorbance assay was used to screen a diverse set of 10,500 compounds for their inhibitory capacity of IRAP. The assay performance was robust with Z'-values ranging from 0.81 to 0.91, and the screen resulted in 23 compounds that displayed greater than 60% inhibition at a compound concentration of 10 µM. After hit confirmation experiments, purity analysis, and promiscuity investigations, three structurally different compounds were considered particularly interesting as starting points for the development of small-molecule-based IRAP inhibitors. After resynthesis, all three compounds confirmed low µM activity and were shown to be rapidly reversible. Additional characterization included activity in a fluorescence-based orthogonal assay and in the presence of a nonionic detergent and a reducing agent, respectively. Importantly, the characterized compounds also showed inhibition of the human ortholog, prompting our further interest in these novel IRAP inhibitors.


Subject(s)
Cystinyl Aminopeptidase/antagonists & inhibitors , High-Throughput Screening Assays , Protease Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Animals , CHO Cells , Cells, Cultured , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Protease Inhibitors/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship
15.
Nat Commun ; 7: 11040, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27010513

ABSTRACT

Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.


Subject(s)
Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Fluorouracil/metabolism , Intracellular Space/metabolism , Thymidylate Synthase/antagonists & inhibitors , Activation, Metabolic/drug effects , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Biological Assay , Deamination/drug effects , Decitabine , Humans , K562 Cells , Kinetics , Phosphorylation/drug effects , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Thymidylate Synthase/metabolism , Time Factors
16.
PLoS One ; 10(3): e0121494, 2015.
Article in English | MEDLINE | ID: mdl-25807013

ABSTRACT

In Mycobacterium tuberculosis the sulfate activating complex provides a key branching point in sulfate assimilation. The complex consists of two polypeptide chains, CysD and CysN. CysD is an ATP sulfurylase that, with the energy provided by the GTPase activity of CysN, forms adenosine-5'-phosphosulfate (APS) which can then enter the reductive branch of sulfate assimilation leading to the biosynthesis of cysteine. The CysN polypeptide chain also contains an APS kinase domain (CysC) that phosphorylates APS leading to 3'-phosphoadenosine-5'-phosphosulfate, the sulfate donor in the synthesis of sulfolipids. We have determined the crystal structures of CysC from M. tuberculosis as a binary complex with ADP, and as ternary complexes with ADP and APS and the ATP mimic AMP-PNP and APS, respectively, to resolutions of 1.5 Å, 2.1 Å and 1.7 Å, respectively. CysC shows the typical APS kinase fold, and the structures provide comprehensive views of the catalytic machinery, conserved in this enzyme family. Comparison to the structure of the human homolog show highly conserved APS and ATP binding sites, questioning the feasibility of the design of specific inhibitors of mycobacterial CysC. Residue Cys556 is part of the flexible lid region that closes off the active site upon substrate binding. Mutational analysis revealed this residue as one of the determinants controlling lid closure and hence binding of the nucleotide substrate.


Subject(s)
Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/metabolism , Peptides/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sulfates/metabolism , Adenosine Phosphosulfate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Catalytic Domain , Molecular Sequence Data , Nucleotides/metabolism , Peptides/metabolism , Phosphoadenosine Phosphosulfate/metabolism , Protein Structure, Tertiary , Sequence Alignment , Sulfate Adenylyltransferase/chemistry , Sulfate Adenylyltransferase/metabolism
17.
Nat Protoc ; 9(9): 2100-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25101824

ABSTRACT

Thermal shift assays are used to study thermal stabilization of proteins upon ligand binding. Such assays have been used extensively on purified proteins in the drug discovery industry and in academia to detect interactions. Recently, we published a proof-of-principle study describing the implementation of thermal shift assays in a cellular format, which we call the cellular thermal shift assay (CETSA). The method allows studies of target engagement of drug candidates in a cellular context, herein exemplified with experimental data on the human kinases p38α and ERK1/2. The assay involves treatment of cells with a compound of interest, heating to denature and precipitate proteins, cell lysis, and the separation of cell debris and aggregates from the soluble protein fraction. Whereas unbound proteins denature and precipitate at elevated temperatures, ligand-bound proteins remain in solution. We describe two procedures for detecting the stabilized protein in the soluble fraction of the samples. One approach involves sample workup and detection using quantitative western blotting, whereas the second is performed directly in solution and relies on the induced proximity of two target-directed antibodies upon binding to soluble protein. The latter protocol has been optimized to allow an increased throughput, as potential applications require large numbers of samples. Both approaches can be completed in a day.


Subject(s)
Drug Delivery Systems/methods , Drug Discovery/methods , Hot Temperature , Pharmaceutical Preparations/metabolism , Protein Stability , Proteins/analysis , Proteins/metabolism , Blotting, Western , Humans , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase 14/metabolism , Protein Binding
18.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695224

ABSTRACT

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/metabolism , Nucleotides/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Catalytic Domain , Cell Death/drug effects , Cell Survival/drug effects , Crystallization , DNA Damage , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Deoxyguanine Nucleotides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Neoplasms/pathology , Oxidation-Reduction/drug effects , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrophosphatases/antagonists & inhibitors , Reproducibility of Results , Xenograft Model Antitumor Assays , Nudix Hydrolases
19.
ChemistryOpen ; 3(6): 256-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25558444

ABSTRACT

The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 µm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.

20.
J Biomol Screen ; 17(7): 933-45, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22644269

ABSTRACT

The TWEAK-Fn14 pathway is upregulated in models of inflammation, autoimmune diseases, and cancer. Both TWEAK and Fn14 show increased expression also in the CNS in response to different stimuli, particularly astrocytes, microglia, and neurons, leading to activation of NF-κB and release of proinflammatory cytokines. Although neutralizing antibodies against these proteins have been shown to have therapeutic efficacy in animal models of inflammation, no small-molecule therapeutics are yet available. Here, we describe the development of a novel homogeneous time-resolved fluorescence (HTRF)-based screening assay together with several counterassays for the identification of small-molecule inhibitors of this protein-protein interaction. Recombinant HIS-TWEAK and Fn14-Fc proteins as well as FLAG-TWEAK and Fn14-FLAG proteins and an anti-Fn14 antibody were used to establish and validate these assays and to screen a library of 60 000 compounds. Two HTRF counterassays with unrelated proteins in the same assay format, an antiaggregation assay and a redox assay, were applied to filter out potential false-positive compounds. The novel assay and associated screening cascade should be useful for the discovery of small-molecule inhibitors of the TWEAK-Fn14 protein interaction.


Subject(s)
Drug Screening Assays, Antitumor/methods , High-Throughput Screening Assays/methods , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Tumor Necrosis Factor Inhibitors , Autoimmune Diseases/metabolism , Cell Line , Cytokine TWEAK , HEK293 Cells , Humans , Inflammation/metabolism , Neoplasms/metabolism , Oligopeptides , Peptides/metabolism , Receptors, Tumor Necrosis Factor/metabolism , TWEAK Receptor , Tumor Necrosis Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...