Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: mdl-33731353

ABSTRACT

For the two proteins myoglobin and fluoroacetate dehalogenase, we present a systematic comparison of crystallographic diffraction data collected by serial femtosecond (SFX) and serial synchrotron crystallography (SSX). To maximize comparability, we used the same batch of micron-sized crystals, the same sample delivery device, and the same data analysis software. Overall figures of merit indicate that the data of both radiation sources are of equivalent quality. For both proteins, reasonable data statistics can be obtained with approximately 5000 room-temperature diffraction images irrespective of the radiation source. The direct comparability of SSX and SFX data indicates that the quality of diffraction data obtained from these samples is linked to the properties of the crystals rather than to the radiation source. Therefore, for other systems with similar properties, time-resolved experiments can be conducted at the radiation source that best matches the desired time resolution.


Subject(s)
Proteins , Synchrotrons , Crystallography, X-Ray
2.
Sci Rep ; 9(1): 12431, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455801

ABSTRACT

Macromolecular Crystallography is a powerful and valuable technique to assess protein structures. Samples are commonly cryogenically cooled to minimise radiation damage effects from the X-ray beam, but low temperatures hinder normal protein functions and this procedure can introduce structural artefacts. Previous experiments utilising acoustic levitation for beamline science have focused on Langevin horns which deliver significant power to the confined droplet and are complex to set up accurately. In this work, the low power, portable TinyLev acoustic levitation system is used in combination with an approach to dispense and contain droplets, free of physical sample support to aid protein crystallography experiments. This method facilitates efficient X-ray data acquisition in ambient conditions compatible with dynamic studies. Levitated samples remain free of interference from fixed sample mounts, receive negligible heating, do not suffer significant evaporation and since the system occupies a small volume, can be readily installed at other light sources.

3.
Struct Dyn ; 4(5): 054308, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29152535

ABSTRACT

A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs) is the determination of time zero (T0)-the time an optical pulse (e.g., an optical laser) arrives coincidently with the probe pulse (e.g., a XFEL pulse) at the sample position. In some cases, T0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T0. In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated). Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV-IR) as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

4.
Lab Chip ; 17(24): 4225-4230, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29124258

ABSTRACT

This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

5.
Chem Ind ; 30: 1298-9, 1966 Jul 23.
Article in English | MEDLINE | ID: mdl-5940383

Subject(s)
Flour , Food Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...