Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 137: 107671, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32950847

ABSTRACT

An advanced molecularly imprinted electrochemical sensor with high sensitivity and selectivity for the detection of Human immunoglobulin G (IgG) was successfully constructed. With acrylamide imprinting systems, surface imprinting on the nanoparticles CuFe2O4 targeted at IgG was employed to prepare molecularly imprinted polymer, which served as recognition element for the electrochemical sensor. Furthermore, the sensor harnessed a molybdenum disulfide (MoS2)@nitrogen doped graphene quantum dots (N-GQDs) with ionic liquid (IL) nanocomposite for signal amplification. Under optimized experimental conditions, the sensor shortened the response time to less than 8 min, and the response was linear at the IgG concentration of 0.1-50 ng·mL-1 with a low detection limit of 0.02 ng·mL-1 (S/N = 3). Our findings suggested that, the sensor exhibited high detectability and long-time stability. The satisfactory results of human serum sample analysis showed that the developed IgG sensor had promising potential clinical applications in detecting IgG content.


Subject(s)
Electrochemical Techniques/instrumentation , Immunoglobulin G/blood , Molecular Imprinting , Disulfides/chemistry , Humans , Ionic Liquids/chemistry , Limit of Detection , Molybdenum/chemistry , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...