Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Invest ; 127(7): 2842-2854, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28581443

ABSTRACT

The quantity and activation state of adipose tissue macrophages (ATMs) impact the development of obesity-induced metabolic diseases. Appetite-controlling hormones play key roles in obesity; however, our understanding of their effects on ATMs is limited. Here, we have shown that human and mouse ATMs express NPFFR2, a receptor for the appetite-reducing neuropeptide FF (NPFF), and that NPFFR2 expression is upregulated by IL-4, an M2-polarizing cytokine. Plasma levels of NPFF decreased in obese patients and high-fat diet-fed mice and increased following caloric restriction. NPFF promoted M2 activation and increased the proliferation of murine and human ATMs. Both M2 activation and increased ATM proliferation were abolished in NPFFR2-deficient ATMs. Mechanistically, the effects of NPFF involved the suppression of E3 ubiquitin ligase RNF128 expression, resulting in enhanced stability of phosphorylated STAT6 and increased transcription of the M2 macrophage-associated genes IL-4 receptor α (Il4ra), arginase 1 (Arg1), IL-10 (Il10), and alkylglycerol monooxygenase (Agmo). NPFF induced ATM proliferation concomitantly with the increase in N-Myc downstream-regulated gene 2 (Ndrg2) expression and suppressed the transcription of Ifi200 cell-cycle inhibitor family members and MAF bZIP transcription factor B (Mafb), a negative regulator of macrophage proliferation. NPFF thus plays an important role in supporting healthy adipose tissue via the maintenance of metabolically beneficial ATMs.


Subject(s)
Adipose Tissue/immunology , Cell Proliferation , Macrophage Activation , Macrophages/immunology , Oligopeptides/immunology , Adaptor Proteins, Signal Transducing , Animals , Arginase/genetics , Arginase/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-4/genetics , Interleukin-4/immunology , MafB Transcription Factor/genetics , MafB Transcription Factor/immunology , Male , Mice , Mice, Transgenic , Oligopeptides/genetics , Proteins/genetics , Proteins/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
3.
Pharmacol Ther ; 160: 84-132, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26896564

ABSTRACT

RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.


Subject(s)
Amides/metabolism , Mammals/metabolism , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Animals , Drug Discovery/methods , Humans
4.
Article in English | MEDLINE | ID: mdl-25324831

ABSTRACT

Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.

5.
J Vis Exp ; (89): e51264, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25145878

ABSTRACT

Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy.


Subject(s)
Analgesics, Opioid/pharmacology , Hyperalgesia/chemically induced , Morphine/pharmacology , Animals , Drug Tolerance , Female , Hot Temperature , Hyperalgesia/diagnosis , Male , Mice , Mice, Inbred C57BL , Nociception/drug effects , Pain Measurement/methods , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...