Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 9(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492779

ABSTRACT

In the Mediterranean region, artichoke and broccoli are major crops with a high amount of by-products that can be used as alternative feedstuffs for ruminants, lowering feed costs and enhancing milk sustainability while reducing the environmental impact of dairy production. However, nutritional quality of milk needs to be assured under these production conditions and an optimal inclusion ratio of silages should be determined. This work aimed to evaluate the effect of three inclusion levels (25%, 40%, and 60%) of these silages (artichoke plant, AP, and broccoli by-product, BB) in goat diets on milk yield, composition, and mineral and fatty profiles. Treatments with 60% inclusion of AP and BB presented the lowest milk yield. No differences were found on the milk mineral profile. Inclusion of AP in the animals' diet improved the milk lipid profile from the point of view of human health (AI, TI) compared to BB due to a lower saturated fatty acid content (C12:0, C14:0, and C16:0) and a higher concentration of polyunsaturated fatty acids (PUFA), especially vaccenic acid (C18:1 trans11) and rumenic acid (CLA cis9, trans11), without any differences with the control treatment.

2.
Anim Sci J ; 90(9): 1303-1312, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31317611

ABSTRACT

Yield, chemical composition, fatty acid profile, and sensory acceptability of Panela cheese produced from cows grazing in an intensive silvopastoral system (ISS) with Leucaena leucocephala and Cynodon nlemfuensis were evaluated and compared with Panela cheese from cows grazing a monoculture system (MS) of C. nlemfuensis only. The experiment lasted for 9 weeks in a tropical area in Mexico using ten crossbred cows (30-90 days of milking) assigned homogenously as five cows in each experimental group. No significant differences were found between the two systems for milk and cheese gross composition. Panela cheese from ISS showed lower content of the hypercholesterolemic fatty acids, accompanied with higher content of omega-3, omega-6 and polyunsaturated fatty acids. In addition, Panela cheese from ISS showed higher preference for the attributes of appearance, texture, flavor, and overall acceptability. It is concluded that Panela cheese from cows grazing in ISS has better acceptability and nutritional properties than that produced from MS with grass only.


Subject(s)
Cheese/analysis , Fatty Acids/analysis , Milk/chemistry , Animals , Cattle , Fabaceae , Fatty Acids, Omega-3/analysis , Fatty Acids, Unsaturated/analysis , Female , Herbivory , Nutritive Value , Poaceae
3.
Asian-Australas J Anim Sci ; 31(11): 1738-1746, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29103289

ABSTRACT

OBJECTIVE: The aim of the experiment was to assess the effect of increasing amounts of Leucaena leucocephala forage on dry matter intake (DMI), organic matter intake (OMI), enteric methane production, rumen fermentation pattern and protozoa population in cattle fed Pennisetum purpureum and housed in respiration chambers. METHODS: Five crossbred heifers (Bos taurus×Bos indicus) (BW: 295±6 kg) were fed chopped P. purpureum grass and increasing levels of L. leucocephala (0%, 20%, 40%, 60%, and 80% of dry matter [DM]) in a 5×5 Latin square design. RESULTS: The voluntary intake and methane production were measured for 23 h per day in respiration chambers; molar proportions of volatile fatty acids (VFAs) were determined at 6 h postprandial period. Molar concentration of VFAs in rumen liquor were similar (p>0.05) between treatments. However, methane production decreased linearly (p<0.005), recording a maximum reduction of up to ~61% with 80% of DM incorporation of L. leucocephala in the ration and no changes (p>0.05) in rumen protozoa population were found. CONCLUSION: Inclusion of 80% of L. leucocephala in the diet of heifers fed low-quality tropical forages has the capacity to reduce up to 61.3% enteric methane emission without affecting DMI, OMI, and protozoa population in rumen liquor.

4.
BMC Vet Res ; 5: 46, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-20038297

ABSTRACT

BACKGROUND: The use of Duddingtonia flagrans as a tool for the biological control of gastrointestinal nematodes (GIN) is a promising alternative to anthelmintics. The chlamydospores of D. flagrans are orally dosed and their thick cell wall gives them the capacity to resist digestion and pass through the gastrointestinal tract (GIT). Chlamydospores reaching the faeces are able to germinate and trap nematode larvae. The efficacy of this control method is based on reducing the numbers of infective larvae leaving the faeces. Techniques have recently been developed for quantifying the numbers of chlamydospores in faeces. As the number of non-digested spores could be relevant in the design and optimization of dosing programmes for the control of GIN infective larvae, the aim of the present study was to estimate the loss of D. flagrans chlamydospores during their passage through the ruminant gastrointestinal tract using in vitro and in vivo techniques. RESULTS: After in vitro rumen digestion, chlamydospore recovery was not different from the quantity originally incubated (undigested spores) (P > 0.05). In vitro rumen+abomasum digestion caused nearly 36% loss of the chlamydospores originally incubated (P < 0.05). Germination of chlamydospores classified as viable was 24.3%. Chlamydospores classified as non-viable did not germinate. Rumen digestion resulted in more spore germination (R1 = 35.7% and R2 = 53.3%) compared to no digestion (time 0 h = 8.7%). Subsequent abomasal digestion reduced germination (R1+A = 25%) or stopped it (R2+A = 0%). In vivo apparent chlamydospore digestibility in sheep showed a loss of 89.7% of the chlamydospores (P < 0.05). CONCLUSIONS: The loss of chlamydospores was evident under in vitro and in vivo conditions. Negligible amounts of spores were lost during the in vitro rumen digestion. However, in vitro rumen+abomasum digestion resulted in a chlamydospore loss of approximately 36%. In vivo passage through the sheep GIT resulted in a total loss of 89.7% of the orally administered spores.


Subject(s)
Ascomycota , Gastrointestinal Tract/microbiology , Spores, Fungal , Abomasum/microbiology , Animals , Ascomycota/physiology , Digestion , Feces/microbiology , Haemonchiasis/prevention & control , Haemonchiasis/veterinary , Haemonchus/microbiology , In Vitro Techniques , Larva/microbiology , Nematode Infections/prevention & control , Pest Control, Biological/methods , Rumen/microbiology , Sheep/microbiology , Sheep/parasitology , Sheep Diseases/microbiology , Sheep Diseases/parasitology , Sheep Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...