Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(2): e0105523, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38189306

ABSTRACT

We screened and isolated Priestia megaterium strain AB-S79 from active gold mine soil, then sequenced its genome to unravel its biosynthetic traits. The isolate with a 5.7-Mb genome can be utilized as a reference in genome-guided strain selection for metabolic engineering and other biotechnological operations.

2.
Microbiol Resour Announc ; 12(12): e0084923, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37966236

ABSTRACT

Pseudomonas iranensis ABS_30, isolated from gold mining soil, exhibits metal-resistant properties valuable for heavy metal removal. We report the draft genome sequencing of the P. iranensis ABS_30 strain, which is 5.9 Mb in size.

3.
Mol Plant Microbe Interact ; 34(6): 602-605, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33555220

ABSTRACT

Many strains from Bacillus thuringiensis are known for their genomic robustness and antimicrobial potentials. As a result, the quest for their biotechnological applications, especially in the agroindustry (e.g., as biopesticides), has increased over the years. This study documents the genome sequencing and probing of a Fusarium antagonist (B. thuringiensis strain MORWBS1.1) with possible biopesticidal metabolite producing capacity from South Africa. Based on in vitro evaluation and in silico antiSMASH investigation, B. thuringiensis strain MORWBS1.1 exhibited distinctive genomic properties that could be further exploited for in planta and food additive production purposes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacillus thuringiensis , Dioxygenases , Bacillus thuringiensis/genetics , Dihydroxyphenylalanine , Genomics , Quercetin
4.
Phytopathology ; 111(5): 896-898, 2021 May.
Article in English | MEDLINE | ID: mdl-33258413

ABSTRACT

The genus Pseudomonas contains a variety of genomic robust strains and species, well known for their beneficial use in a variety of applications, hence the vast amount of research done on this organism to date. We report here the draft genome sequence of an anti-Fusarium rhizospheric Pseudomonas fulva HARBPS9.1 strain from South Africa. This genome analysis identified clusters of genes responsible for the synthesis of pyoverdin and rhizomide in HARBPS9.1; these compounds should confer a competitive advantage on the pseudomonad.


Subject(s)
Fusarium , Genome, Bacterial , Genome, Bacterial/genetics , Plant Diseases , Pseudomonas/genetics
5.
Front Microbiol ; 11: 548037, 2020.
Article in English | MEDLINE | ID: mdl-33013781

ABSTRACT

The diversity of plant-associated microbes is enormous and complex. These microbiomes are structured and form complex interconnected microbial networks that are important in plant health and ecosystem functioning. Understanding the composition of the microbiome and their core function is important in unraveling their networking strategies and their potential influence on plant performance. The network is altered by the host plant species, which in turn influence the microbial interaction dynamics and co-evolution. We discuss the plant microbiome and the complex interplay among microbes and between their host plants. We provide an overview of how plant performance is influenced by the microbiome diversity and function.

6.
Front Microbiol ; 9: 1986, 2018.
Article in English | MEDLINE | ID: mdl-30186280

ABSTRACT

Mining industries produce vast waste streams that pose severe environmental pollution challenge. Conventional techniques of treatment are usually inefficient and unsustainable. Biological technique employing the use of microorganisms is a competitive alternative to treat mine wastes and recover toxic heavy metals. Microorganisms are used to detoxify, extract or sequester pollutants from mine waste. Sulfate-reducing microorganisms play a vital role in the control and treatment of mine waste, generating alkalinity and neutralizing the acidic waste. The design of engineered sulfate-reducing bacteria (SRB) consortia will be an effective tool in optimizing degradation of acid mine tailings waste in industrial processes. The understanding of the complex functions of SRB consortia vis-à-vis the metabolic and physiological properties in industrial applications and their roles in interspecies interactions are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...