Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Food Sci Technol ; 60(10): 2628-2638, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37599846

ABSTRACT

This manuscript reveals the effect of the emulsification step on the black carrot extract (BCE) stabilization by potato protein isolate (PPI)-citrus pectin (CP) coacervates. The effect of core-to-wall ratio and concentration of wall material were also investigated. This was the first attempt to compare the characteristics of emulsified core particles (ECP) and non-emulsified core particles (NECP) coated with complex coacervates. Potato protein was used as an encapsulating agent by complex coacervation for the first time, and it showed excellent characteristics for the encapsulation. Non-hygroscopic particles were produced with emulsification while most of NECPs were slightly hygroscopic. The mean particle diameter of powders ranged from 65.05 to 152.47 µm which is suitable with SEM micrographs. ECPs showed lower particle size values with increased wall concentration at the constant core-to-wall ratio. Encapsulation efficiency (EE) increased, and anthocyanin retention (AR) decreased when emulsification was included. EE of NECP and ECP was between 69.26-82.84% and 85.48-90.15% while AR was between 79.08-102.16% and 53.90-83.37%, respectively. FT-IR and ζ-potential values proved the complexation between PPI and CP in ECPs as well as the interaction of PP, CP, and BCE in NECPs. DSC thermograms proved the success of the encapsulation procedure and thermo-stability of the BCE-loaded particles. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05787-z.

3.
ACS Omega ; 8(51): 48689-48703, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162757

ABSTRACT

Macroalgal proteins were extracted from Ulva rigida (URPE) (green), Padina pavonica (PPPE) (brown), and Laurencia obtusa (LOPE) (red) using ultrasound-assisted enzymatic extraction, which is one of the green extraction technologies. Techno-functional, characteristic, and digestibility properties, and biological activities including antioxidant (AOA) and angiotensin-I converting enzyme (ACE-I) inhibitory activities were also investigated. According to the results, the extraction yield (EY) (94.74%) was detected in the extraction of L. obtusa, followed by U. rigida and P. pavonica. PPPE showed the highest ACE-I inhibitory activity before in vitro digestion. In contrast to PPPE, LOPE (20.90 ± 0.00%) and URPE (20.20 ± 0.00%) showed higher ACE-I inhibitory activity after in vitro digestion. The highest total phenolic content (TPC) (77.86 ± 1.00 mg GAE/g) was determined in LOPE. On the other hand, the highest AOACUPRAC (74.69 ± 1.78 mg TE/g) and AOAABTS (251.29 ± 5.0 mg TE/g) were detected in PPPE. After in vitro digestion, LOPE had the highest TPC (22.11 ± 2.18 mg GAE/g), AOACUPRAC (8.41 ± 0.06 mg TE/g), and AOAABTS (88.32 ± 0.65 mg TE/g) (p < 0.05). In vitro protein digestibility of three macroalgal protein extracts ranged from 84.35 ± 2.01% to 94.09 ± 0.00% (p < 0.05). Three macroalgae showed high oil holding capacity (OHC), especially PPPE (410.13 ± 16.37%) (p < 0.05), but they showed minimum foaming and emulsifying properties. The quality of the extracted macroalgal proteins was assessed using FTIR, SDS-PAGE, and DSC analyses. According to our findings, the method applied for macroalgal protein extraction could have a potential the promise of ultrasonication application as an environmentally friendly technology for food industry. Moreover, URPE, PPPE, and LOPE from sustainable sources may be attractive in terms of nourishment for people because of their digestibility, antioxidant properties, and ACE-I inhibitory activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...