Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 8(11): 481, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30456015

ABSTRACT

This work describes the performance of a sequencing batch reactor (SBR) and the involvement of a novel reconstituted bacterial consortium in olive mill wastewater (OMW) treatment. The organic loading rate applied to the SBR was serially increased in terms of initial COD from 10 to 75 g L-1 to allow gradual acclimatization of activated sludge to high concentrations of toxic compounds in OMW. After the acclimatization period, up to 60% of the total COD content were effectively biodegraded from OMW at 75 g L-1 COD within 30 day hydraulic retention time. The diversity and community composition of cultivable bacteria participating in the aerobic process of treating OMW were further assessed. A total of 91 bacterial strains were isolated from the reactor and analyzed by amplification of the 16S-23S rRNA internal transcribed spacer (ITS) region and by 16S rRNA gene sequencing. The most abundant phylum was Firmicutes (57.1%) followed by Proteobacteria (35.2%) and Actinobacteria (7.7%). The use of the Biolog® Phenotype Microarray system to evaluate the ability of isolated strains to utilize OMW phenolic compounds is reported in this work for the first time. Interestingly, results showed that all species tested were able to utilize phenolics as sole carbon and energy sources. The removals of COD and phenolics from undiluted OMW by the reconstituted bacterial consortium were almost similar to those obtained by the acclimatized activated sludge, which suggest that cultivable bacteria play the major role in OMW biodegradation. Phytotoxicity assays using tomato seeds showed a significant improvement of seed germination values for treated OMW. Our overall results suggest that the novel developed bacterial consortium could be considered as a good prospect for phenolics-rich wastewaters bioremediation applications.

2.
Sci Rep ; 5: 13112, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26287281

ABSTRACT

The repeated failures reported in cultivating some microbial lineages are a major challenge in microbial ecology and probably linked, in the case of Frankia microsymbionts to atypical patterns of auxotrophy. Comparative genomics of the so far uncultured cluster-2 Candidatus Frankia datiscae Dg1, with cultivated Frankiae has revealed genome reduction, but no obvious physiological impairments. A direct physiological assay on nodule tissues from Coriaria myrtifolia infected with a closely-related strain permitted the identification of a requirement for alkaline conditions. A high pH growth medium permitted the recovery of a slow-growing actinobacterium. The strain obtained, called BMG5.1, has short hyphae, produced diazovesicles in nitrogen-free media, and fulfilled Koch's postulates by inducing effective nodules on axenically grown Coriaria spp. and Datisca glomerata. Analysis of the draft genome confirmed its close proximity to the Candidatus Frankia datiscae Dg1 genome with the absence of 38 genes (trehalose synthase, fumarylacetoacetase, etc) in BMG5.1 and the presence of 77 other genes (CRISPR, lanthionine synthase, glutathione synthetase, catalase, Na+/H+ antiporter, etc) not found in Dg1. A multi-gene phylogeny placed the two cluster-2 strains together at the root of the Frankia radiation.


Subject(s)
Cell Culture Techniques/methods , Frankia/growth & development , Bacterial Proteins/metabolism , Cells, Cultured , Frankia/genetics , Frankia/isolation & purification , Genome, Bacterial , Likelihood Functions , Magnoliopsida/growth & development , Phylogeny , Seedlings/growth & development
3.
Biomed Res Int ; 2014: 439197, 2014.
Article in English | MEDLINE | ID: mdl-25136587

ABSTRACT

Twenty-one moderately halotolerant fungi have been isolated from sample ashes collected from Sebkha El Melah, a Saharan salt flat located in southern Tunisia. Based on morphology and sequence inference from the internal transcribed spacer regions, 28S rRNA gene and other specific genes such as ß-tubulin, actin, calmodulin, and glyceraldehyde-3-phosphate dehydrogenase, the isolates were found to be distributed over 15 taxa belonging to 6 genera of Ascomycetes: Cladosporium (n = 3), Alternaria (n = 4), Aspergillus (n = 3), Penicillium (n = 5), Ulocladium (n = 2), and Engyodontium (n = 2). Their tolerance to different concentrations of salt in solid and liquid media was examined. Excepting Cladosporium cladosporioides JA18, all isolates were considered as alkali-halotolerant since they were able to grow in media containing 10% of salt with an initial pH 10. All isolates were resistant to oxidative stresses and low temperature whereas 5 strains belonging to Alternaria, Ulocladium, and Aspergillus genera were able to grow at 45°C. The screening of fungal strains for sets of enzyme production, namely, cellulase (CMCase), amylase, protease, lipase, and laccase, in presence of 10% NaCl, showed a variety of extracellular hydrolytic and oxidative profiles. Protease was the most abundant enzyme produced whereas laccase producers were members of the genus Cladosporium.


Subject(s)
Ascomycota , Biodiversity , Desert Climate , Fungal Proteins/genetics , Ascomycota/classification , Ascomycota/enzymology , Ascomycota/genetics , Ascomycota/isolation & purification , Tunisia
4.
Chemosphere ; 91(1): 110-4, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23332675

ABSTRACT

Olive Cake (OC) generated by the olive oil industries, well implanted in Tunisia, represents a major disposal and potentially severe pollution problem. This work presents the study of bioconversion of OC in solid state fermentation with the medicinal mushroom, Fomes fomentarius so as to upgrade its nutritional values and digestibility for its use as ruminants feed. The fungus was cultured on OC for 7-30 d, and subsequently the chemical composition, lignocellulolytic enzyme activities and in vitro digestibility of the resultant substrate were determined. The results obtained showed an increase in the crude protein ranging from 6% to 22% for the control and for treated OC, respectively. Significant (P<0.05) decreases in the values of neutral detergent fiber (hemicelluloses, cellulose and lignin), acid detergent fiber (lignin and cellulose) and acid detergent lignin were detected (23%, 13% and 10%, respectively). The estimated in vitro digestibility improved from 9% (control) to 25% (treated OC). The present findings revealed F. fomentarius to be an efficient organism for lignocellulolytic enzymes production and simultaneous enhancement in crude protein and in vitro digestibility of OC.


Subject(s)
Animal Feed/analysis , Coriolaceae , Nutritive Value , Olea , Refuse Disposal/methods , Animals , Dietary Fiber/analysis , Fermentation , Ruminants , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...