Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557812

ABSTRACT

Leishmaniasis is the 3rd most challenging vector-borne disease after malaria and lymphatic filariasis. Currently, no vaccine candidate is approved or marketed against leishmaniasis due to difficulties in eliciting broad immune responses when using sub-unit vaccines. The aim of this work was the design of a particulate sub-unit vaccine for vaccination against leishmaniasis. The poly (D,L-lactide) nanoparticles (PLA-NPs) were developed in order to efficiently adsorb a recombinant L. major histone H2B (L. major H2B) and to boost its immunogenicity. Firstly, a study was focused on the production of well-formed nanoparticles by the nanoprecipitation method without using a surfactant and on the antigen adsorption process under mild conditions. The set-up preparation method permitted to obtain H2B-adsorbed nanoparticles H2B/PLA (adsorption capacity of about 2.8% (w/w)) with a narrow size distribution (287 nm) and a positive zeta potential (30.9 mV). Secondly, an in vitro release assay performed at 37 °C, pH 7.4, showed a continuous release of the adsorbed H2B for almost 21 days (30%) from day 7. The immune response of H2B/PLA was investigated and compared to H2B + CpG7909 as a standard adjuvant. The humoral response intensity (IgG) was substantially similar between both formulations. Interestingly, when challenged with the standard parasite strain (GLC94) isolated from a human lesion of cutaneous leishmaniasis, mice showed a significant reduction in footpad swelling compared to unvaccinated ones, and no deaths occurred until week 17th. Taken together, these results demonstrate that PLA-NPs represent a stable, cost-effective delivery system adjuvant for use in vaccination against leishmaniasis.


Subject(s)
Leishmania major , Leishmaniasis, Cutaneous , Nanoparticles , Vaccines , Humans , Animals , Mice , Adjuvants, Vaccine , Polyesters , Leishmaniasis, Cutaneous/prevention & control , Leishmaniasis, Cutaneous/parasitology , Adjuvants, Immunologic , Histones , Mice, Inbred BALB C , Antigens, Protozoan
2.
Vaccine ; 34(15): 1810-5, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26902547

ABSTRACT

Scorpion envenoming represents a public health issue in subtropical regions of the world. Treatment and prevention need to promote antitoxin immunity. Preserving antigenic presentation while removing toxin effect remains a major challenge in toxin vaccine development. Among particulate adjuvant, particles prepared with poly (D,L-lactide) polymer are the most extensively investigated due to their excellent biocompatibility and biodegradability. The aim of this study is to develop surfactant-free PLA nanoparticles that safely deliver venom toxic fraction to enhance specific immune response. PLA nanoparticles are coated with AahG50 (AahG50/PLA) and BotG50 (BotG50/PLA): a toxic fraction purified from Androctonus australis hector and Buthus occitanus tunetanus venoms, respectively. Residual toxicities are evaluated following injections of PLA-containing high doses of AahG50 (or BotG50). Immunization trials are performed with the detoxified fraction administered alone without adjuvant. A comparative study of the effect of Freund is also included. The neutralizing capacity of sera is determined in naive mice. Six months later, immunized mice are challenged subcutaneously with increased doses of AahG50. Subcutaneous lethal dose 50 (LD50) of AahG50 and BotG50 is of 575 µg/kg and 1300 µg/kg respectively. By comparison, BotG50/PLA is totally innocuous while 50% of tested mice survive 2875 µg AahG50/kg. Alhydrogel and Freund are not able to detoxify such a high dose. Cross-antigenicity between particulate and soluble fraction is also, ensured. AahG50/PLA and BotG50/PLA induce high antibody levels in mice serum. The neutralizing capacity per mL of anti-venom was 258 µg/mL and 186 µg/mL calculated for anti-AahG50/PLA and anti-BotG50/PLA sera, respectively. Animals immunized with AahG50/PLA are protected against AahG50 injected dose of 3162 µg/kg as opposed all non-immunized mice died at this dose. We find that the detoxification approach based PLA nanoparticles, benefit the immunogenicity and protective efficacy of venom immunogen.


Subject(s)
Antivenins/therapeutic use , Biocompatible Materials/chemistry , Immunotherapy, Active , Polyesters/chemistry , Scorpion Venoms/immunology , Adjuvants, Immunologic/chemistry , Animals , Antivenins/chemistry , Female , Mice , Nanoparticles/chemistry , Neutralization Tests , Scorpions , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...