Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 16636, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198707

ABSTRACT

In regions with limited potable water availability, membrane desalination is being employed to filter water using a pressure-driven approach. Because of the high energy consumption required to produce the pressure differential needed for this method, researchers have been trying different geometric designs of spacer filaments to enhance the amount of permeate flux in terms of energy utilization. The purpose of spacer filaments is to support membranes structurally and induce turbulent mixing in spiral wound membrane desalination. In this paper, the improvement of mass transfer in desalination driven by reverse osmosis has been studied using Computational Fluid Dynamics (CFD) with the introduction of spiral wound membranes that are lined with spacer filaments in a zig-zag formation having alternating diameters for strands. The fluid flow characteristics for a 2-dimensional geometric model were resolved using the open-source program OpenFOAM by changing the Reynolds number to just before the inception of instabilities. Ratios of alternate strand diameters were also varied between one and two. Based on a detailed analysis of velocity contours, pressure distribution, wall shear stresses, and steady-state vortex systems, the research findings offer guidance for employing alternating strand design in zig-zag formation for optimum mass transfer and minimal pressure drop when accounting for concentration polarization.


Subject(s)
Biofouling , Drinking Water , Water Purification , Membranes, Artificial , Osmosis , Water Purification/methods
3.
Sci Rep ; 12(1): 3198, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210460

ABSTRACT

The brain-computer interface (BCI) provides an alternate means of communication between the brain and external devices by recognizing the brain activities and translating them into external commands. The functional Near-Infrared Spectroscopy (fNIRS) is becoming popular as a non-invasive modality for brain activity detection. The recent trends show that deep learning has significantly enhanced the performance of the BCI systems. But the inherent bottleneck for deep learning (in the domain of BCI) is the requirement of the vast amount of training data, lengthy recalibrating time, and expensive computational resources for training deep networks. Building a high-quality, large-scale annotated dataset for deep learning-based BCI systems is exceptionally tedious, complex, and expensive. This study investigates the novel application of transfer learning for fNIRS-based BCI to solve three objective functions (concerns), i.e., the problem of insufficient training data, reduced training time, and increased accuracy. We applied symmetric homogeneous feature-based transfer learning on convolutional neural network (CNN) designed explicitly for fNIRS data collected from twenty-six (26) participants performing the n-back task. The results suggested that the proposed method achieves the maximum saturated accuracy sooner and outperformed the traditional CNN model on averaged accuracy by 25.58% in the exact duration of training time, reducing the training time, recalibrating time, and computational resources.

4.
Front Hum Neurosci ; 15: 658444, 2021.
Article in English | MEDLINE | ID: mdl-33994983

ABSTRACT

A passive brain-computer interface (BCI) based upon functional near-infrared spectroscopy (fNIRS) brain signals is used for earlier detection of human drowsiness during driving tasks. This BCI modality acquired hemodynamic signals of 13 healthy subjects from the right dorsolateral prefrontal cortex (DPFC) of the brain. Drowsiness activity is recorded using a continuous-wave fNIRS system and eight channels over the right DPFC. During the experiment, sleep-deprived subjects drove a vehicle in a driving simulator while their cerebral oxygen regulation (CORE) state was continuously measured. Vector phase analysis (VPA) was used as a classifier to detect drowsiness state along with sleep stage-based threshold criteria. Extensive training and testing with various feature sets and classifiers are done to justify the adaptation of threshold criteria for any subject without requiring recalibration. Three statistical features (mean oxyhemoglobin, signal peak, and the sum of peaks) along with six VPA features (trajectory slopes of VPA indices) were used. The average accuracies for the five classifiers are 90.9% for discriminant analysis, 92.5% for support vector machines, 92.3% for nearest neighbors, 92.4% for both decision trees, and ensembles over all subjects' data. Trajectory slopes of CORE vector magnitude and angle: m(|R|) and m(∠R) are the best-performing features, along with ensemble classifier with the highest accuracy of 95.3% and minimum computation time of 40 ms. The statistical significance of the results is validated with a p-value of less than 0.05. The proposed passive BCI scheme demonstrates a promising technique for online drowsiness detection using VPA along with sleep stage classification.

5.
Front Neurorobot ; 15: 605751, 2021.
Article in English | MEDLINE | ID: mdl-33815084

ABSTRACT

Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.

6.
Sensors (Basel) ; 20(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297516

ABSTRACT

A state-of-the-art brain-computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel's correlation coefficients' maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems' performance.

7.
Front Neurosci ; 14: 584, 2020.
Article in English | MEDLINE | ID: mdl-32655353

ABSTRACT

Cognitive workload is one of the widely invoked human factors in the areas of human-machine interaction (HMI) and neuroergonomics. The precise assessment of cognitive and mental workload (MWL) is vital and requires accurate neuroimaging to monitor and evaluate the cognitive states of the brain. In this study, we have decoded four classes of MWL using long short-term memory (LSTM) with 89.31% average accuracy for brain-computer interface (BCI). The brain activity signals are acquired using functional near-infrared spectroscopy (fNIRS) from the prefrontal cortex (PFC) region of the brain. We performed a supervised MWL experimentation with four varying MWL levels on 15 participants (both male and female) and 10 trials of each MWL per participant. Real-time four-level MWL states are assessed using fNIRS system, and initial classification is performed using three strong machine learning (ML) techniques, support vector machine (SVM), k-nearest neighbor (k-NN), and artificial neural network (ANN) with obtained average accuracies of 54.33, 54.31, and 69.36%, respectively. In this study, novel deep learning (DL) frameworks are proposed, which utilizes convolutional neural network (CNN) and LSTM with 87.45 and 89.31% average accuracies, respectively, to solve high-dimensional four-level cognitive states classification problem. Statistical analysis, t-test, and one-way F-test (ANOVA) are also performed on accuracies obtained through ML and DL algorithms. Results show that the proposed DL (LSTM and CNN) algorithms significantly improve classification performance as compared with ML (SVM, ANN, and k-NN) algorithms.

8.
Front Neurorobot ; 13: 43, 2019.
Article in English | MEDLINE | ID: mdl-31333441

ABSTRACT

Control of active prosthetic hands using surface electromyography (sEMG) signals is an active research area; despite the advances in sEMG pattern recognition and classification techniques, none of the commercially available prosthetic hands provide the user with an intuitive control. One of the major reasons for this disparity between academia and industry is the variation of sEMG signals in a dynamic environment as opposed to the controlled laboratory conditions. This research investigated the effects of sEMG signal variation on the performance of a hand motion classifier due to arm position variation and also explored the effect of static position and dynamic movement strategies for classifier training. A wearable system is used to measure the electrical activity of the muscles and the position of the forearm while performing six classes of hand motions. The system is made position aware (POS) using inertial measurement units (IMUs) for different arm movement gestures. The hand gestures are decoded under both static and dynamic forearm movements. Four time domain (TD) features are extracted from the sEMG signals along with IMU-based arm position information. The features are trained and tested using linear discriminant analysis (LDA) and support vector machine (SVM) for both TD and TD-POS features. The results for the SVM show a significant difference between the static and dynamic approaches, while the TD-POS features show enhanced classification performance in comparison to the TD-based classification. Results have shown the effectiveness of the dynamic training approach and sensor fusion techniques to improve the performance of existing stand-alone sEMG-based prosthetic control systems.

9.
Biomed Res Int ; 2015: 638036, 2015.
Article in English | MEDLINE | ID: mdl-25834822

ABSTRACT

Computer-assisted analysis of electroencephalogram (EEG) has a tremendous potential to assist clinicians during the diagnosis of epilepsy. These systems are trained to classify the EEG based on the ground truth provided by the neurologists. So, there should be a mechanism in these systems, using which a system's incorrect markings can be mentioned and the system should improve its classification by learning from them. We have developed a simple mechanism for neurologists to improve classification rate while encountering any false classification. This system is based on taking discrete wavelet transform (DWT) of the signals epochs which are then reduced using principal component analysis, and then they are fed into a classifier. After discussing our approach, we have shown the classification performance of three types of classifiers: support vector machine (SVM), quadratic discriminant analysis, and artificial neural network. We found SVM to be the best working classifier. Our work exhibits the importance and viability of a self-improving and user adapting computer-assisted EEG analysis system for diagnosing epilepsy which processes each channel exclusive to each other, along with the performance comparison of different machine learning techniques in the suggested system.


Subject(s)
Brain/physiopathology , Electroencephalography/methods , Epilepsy/diagnosis , Signal Processing, Computer-Assisted , Electroencephalography/classification , Epilepsy/classification , Epilepsy/physiopathology , Humans , Neural Networks, Computer , Principal Component Analysis , Support Vector Machine , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...