Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Orthop Belg ; 88(3): 433-440, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36791695

ABSTRACT

The pullout performance of various pedicle screws after artificial fusion process was investigated in this study. Normal, cannulated (cemented), novel expandable and normal (cemented) pedicle screws were tested. Polyurethane foams (Grade 10 and Grade 40) produced by casting method were used as test materials. The instrumentation of pedicle screws has been carried out with production of foams, simultaneously. For cemented pedicle screws, 3D models were prepared with respect to the anteriosuperior and oblique radiographs by using PMMA before casting procedure. Pullout tests were performed in an Instron 3369 testing device. Load versus displacement graph was recorded and the ultimate force was defined as the pullout strength sustained before failure of screw. As expected, the pullout strengths of pedicle screws in postfusion are higher than before fusion. Pullout strengths increased significantly by artificial fusion in Grade 10 foams compared to Grade 40 foams. Additionally, while the pullout strengths of normal, cannulated and novel expandable pedicle screws increased by artificial fusion, cemented normal pedicle screws had lower pullout values than before fusion in Grade 40 foams. When the cemented normal pedicle screws are excluded, other screws have almost similar pullout strength level. On the other hand, the pedicle screws have different increasing behaviour also, there is no correlation between each other. As a result, the novel expandable pedicle screws can be used instead of normal and cannulated ones due to their performances in non-cemented usage.


Subject(s)
Pedicle Screws , Humans , Materials Testing , Biomechanical Phenomena
2.
Proc Inst Mech Eng H ; 232(4): 395-402, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29393011

ABSTRACT

Objective of this study is to assess the pullout performance of various pedicle screws in different test materials after toggling tests comparatively. Solid core, cannulated (cemented), novel expandable and solid-core (cemented) pedicle screws were instrumented to the polyurethane foams (Grade 10 and Grade 40) produced in laboratory and bovine vertebra. ASTM F543 standard was used for preparation process of samples. Toggling tests were carried out. After toggling test procedures, pullout tests were performed. Load versus displacement graph was recorded, and the ultimate pullout force was defined as the maximum load (pullout strength) sustained before failure of screw. Anteriosuperior and oblique radiographs were taken from each sample after instrumentation in order to examine screw placement and cement distribution. The pullout strength of pedicle screws decreased after toggling tests with respect to the initial condition. While the cemented solid-core pedicle screws had the highest pullout strength in all test materials, they had the highest strength differences. The cemented solid-core pedicle screws had decrement rates of 27% and 16% in Grade 10 and Grade 40, respectively. There are almost same decrement rate (between 5.5% and 6.5%) for all types of pedicle screws instrumented to the samples of bovine vertebra. The pullout strengths of novel expandable pedicle screws in both of early period and after toggling conditions were almost similar, in other words, the decrement rates of it were lower than other types. According to the data collected from this study, polymethylmethacrylate augmentation significantly decreases pullout strength following the toggling loads. Higher brittleness of cured polymethylmethacrylate has adverse effect on the pullout strength. Although augmentation is an important process for enhancing pullout strength in early period, it has some disadvantages for preserving stabilization in a long time. Expandable pedicle screw with polyetheretherketone shell may be good alternative to polymethylmethacrylate augmentation on both primer stabilization and long-term loading application with toggling.


Subject(s)
Mechanical Phenomena , Pedicle Screws , Animals , Cattle , Materials Testing , Polymethyl Methacrylate
3.
Proc Inst Mech Eng H ; 231(2): 169-175, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28095741

ABSTRACT

Aim of this study is to assess the pullout performance of various pedicle screws in different test materials. Polyurethane foams (Grade 10 and Grade 40) produced in laboratory and bovine vertebrae were instrumented with normal, cannulated (cemented), novel expandable and normal (cemented) pedicle screws. Test samples were prepared according to the ASTM F543 standard testing protocols and surgical guidelines. To examine the screw placement and cement distribution, anteriosuperior and oblique radiographs were taken from each sample after insertion process was completed. Pullout tests were performed in an Instron 3369 testing device. Load versus displacement graphs were recorded and the ultimate pullout force was defined as the maximum load (pullout strength) sustained before failure of screw. Student's t-test was performed on each group whether the differences between pullout strength of pedicle screws were significant or not. While normal pedicle screws have the lowest pullout strength in all test materials, normal pedicle screws cemented with polymethylmethacrylate exhibit significantly higher pullout performance than others. For all test materials, there is a significant improvement in pullout strength of normal screws by augmentation. While novel expandable pedicle screws with expandable poly-ether-ether-ketone shells exhibited lower pullout performance than normal screws cemented with polymethylmethacrylate, their pullout performances in all groups were higher than the ones of normal and cannulated pedicle screws. For all test materials, although cannulated pedicle screws exhibit higher pullout strength than normal pedicle screws, there are no significant differences between the two groups. The novel expandable pedicle screws with expandable poly-ether-ether-ketone shells may be used instead of normal and cannulated pedicle screws cemented with polymethylmethacrylate due to their good performances.


Subject(s)
Pedicle Screws , Animals , Benzophenones , Biomechanical Phenomena , Bone Cements , Cattle , Equipment Failure Analysis , Humans , In Vitro Techniques , Ketones , Materials Testing , Polyethylene Glycols , Polymers , Polyurethanes , Spinal Fusion/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...