Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Insect Biochem Physiol ; 115(1): e22062, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37905458

ABSTRACT

Mitochondria are essential organelles for maintaining vital cellular functions, and microRNAs (miRNAs) regulate gene expression posttranscriptionally. miRNAs exhibit tissue and time-specific patterns in mitochondria and specifically mitochondrial miRNAs (mitomiRs) can regulate the mRNA expression both originating from mitochondrial and nuclear transcription which affect mitochondrial metabolic activity and cell homeostasis. In this study, miRNAs of two insect species, Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma), were investigated for the first time. The known and possible novel miRNAs were predicted and characterized and their potential effects on mitochondrial transcription were investigated in these insect species using deep sequencing. The previously reported mitomiRs were also investigated and housekeeping miRNAs were characterized. miRNAs that are involved in mitochondrial processes such as apoptosis and signaling and that affect genes encoding the subunits of OXPHOS complexes have been identified in each species. Here, 81 and 161 novel mature miRNA candidates were bioinformatically predicted and 9 and 24 of those were aligned with reference mitogenomes of S. parreyssi and L. saccharina, respectively. As a result of RNAHybrid analysis, 51 and 69 potential targets of miRNAs were found in the mitogenome of S. parreyssi and L. saccharina, respectively. cox1 gene was the most targeted gene and cytB, rrnS, and rrnL genes were highly targeted in both of the species by novel miRNAs, hypothetically. We speculate that these novel miRNAs, originating from or targeting mitochondria, influence on rRNA genes or positively selected mitochondrial protein-coding genes. These findings may provide a new perspective in evaluating miRNAs for maintaining mitochondrial function and transcription.


Subject(s)
Hymenoptera , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Lepisma/genetics , Hymenoptera/genetics , Hymenoptera/metabolism , Gene Expression Regulation , Mitochondria/genetics , Mitochondria/metabolism
2.
Arch Insect Biochem Physiol ; 113(4): e22026, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37232230

ABSTRACT

The transcription of the mitogenome shows a unique pattern that is both similar to and different from the nuclear and bacterial patterns. Mitochondrial transcription generates five polycistronic units from three promoters in Drosophila melanogaster, and different expression levels of genes were observed in both different and, interestingly, the same polycistronic units in D. melanogaster. This study was conducted to test this phenomenon in the mitogenome of Syrista parreyssi (Hymenoptera: Cephidae). RNA isolation and DNase digestion were performed using only one whole individual, and real-time polymerase chain reaction analyses were performed with complementary DNAs of 11 gene regions using gene-specific primers. It was found that the expression level of each gene exhibited differences from each other, and some genes (e.g., cox genes, and rrnS) were interestingly expressed at significant levels in the corresponding antisense chain. Additionally, the mitogenome of S. parreyssi was found to have the capacity to encode 169 additional peptides from 13 known protein-coding genes, most of which were encoded in antisense transcript units. One of the unique findings was a potential open reading frame sequence that was potentially encoded in the antisense rrnL gene and included a conserved cox3 domain.


Subject(s)
Drosophila melanogaster , Hymenoptera , Animals , Drosophila melanogaster/genetics , Hymenoptera/genetics , Transcription, Genetic
3.
Mitochondrion ; 68: 72-80, 2023 01.
Article in English | MEDLINE | ID: mdl-36400160

ABSTRACT

The animal mitogenomes which undergone a reductive evolution has an obvious loss of coding capacity compared to their known closest relatives, but it has not yet been fully investigated why and how the intergenic regions do not encode protein and have no known functions, are stably maintained, replicated, and transmitted by the genome. These relatively small intergenic regions may not be under neutral evolution and they may have functional and/or regulatory roles that have yet to be identified. Here, the distribution pattern, sequence content and location of a novel sequence motif of 'WWWGHTW' were bioinformatically investigated and characterised by constructing a sampling mitogenome dataset of 1889 species from 14 phyla representing the clade of Bilateria. This motif is reverse complementary of the previously described DmTTF binding sequence and found in the nd4L- (X) -trnT gene cluster. This cluster commonly exhibits a strand displacement region and an intergenic region among the bilaterian superphylums, particularly in Ecdysozoa. This motif may be accepted as a substrate providing binding sites for the specific interaction with transcription factors because of (i) its reverse complementarity of previously described DmTTF binding sequence, and (ii) the possession of G and T nucleotides in the fourth and sixth positions, (iii) the bias on T and G nucleotides instead of C and A in the degenerated positions. This suggestion is also supported by the presence of a strand displacement region in the nd4L- (X) -trnT gene cluster, particularly in Ecdysozoa consisting of the most rearranged mitogenomes among the bilaterian superphylums.


Subject(s)
Genome, Mitochondrial , Transcription, Genetic , Animals , Transcription Factors/genetics , Binding Sites , Nucleotides , DNA, Intergenic , Phylogeny
4.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33398248

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...