Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Mater Au ; 4(2): 214-223, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38496046

ABSTRACT

This study presents a pioneering semiconductor-catalyst core-shell architecture designed to enhance photocatalytic water oxidation activity significantly. This innovative assembly involves the in situ deposition of CoFe Prussian blue analogue (PBA) particles onto SrTiO3 (STO) and blue SrTiO3 (bSTO) nanocubes, effectively establishing a robust p-n junction, as demonstrated by Mott-Schottky analysis. Of notable significance, the STO/PB core-shell catalyst displayed remarkable photocatalytic performance, achieving an oxygen evolution rate of 129.6 µmol g-1 h-1, with stability over an extended 9-h in the presence of S2O82- as an electron scavenger. Thorough characterization unequivocally verified the precise alignment of the band energies within the STO/PB core-shell assembly. Our research underscores the critical role of tailored semiconductor-catalyst interfaces in advancing the realm of photocatalysis and its broader applications in renewable energy technologies.

2.
ACS Appl Mater Interfaces ; 16(8): 10078-10092, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38374586

ABSTRACT

Hydrogen shows great promise as a carbon-neutral energy carrier that can significantly mitigate global energy challenges, offering a sustainable solution. Exploring catalysts that are highly efficient, cost-effective, and stable for the hydrogen evolution reaction (HER) holds crucial importance. For this, metal-organic framework (MOF) materials have demonstrated extensive applicability as either a heterogeneous catalyst or catalyst precursor. Herein, a nanostructured interface between NiMo/CuO@C derived from Cu-MOF was designed and developed on nickel foam (NF) as a competent HER electrocatalyst in alkaline media. The catalyst exhibited a low overpotential of 85 mV at 10 mA cm-2 that rivals that of Pt/C (83 mV @ 10 mA cm-2). Moreover, the catalyst's durability was measured through chronopotentiometry at a constant current density of -30, -100, and -200 mA cm-2 for 50 h each in 1.0 M KOH. Such enhanced electrocatalytic performance could be ascribed to the presence of highly conductive C and Cu species, the facilitated electron transfer between the components because of the nanostructured interface, and abundant active sites as a result of multiple oxidation states. The existence of an ionized oxygen vacancy (Ov) signal was confirmed in all heat-treated samples through electron paramagnetic resonance (EPR) analysis. This revelation sheds light on the entrapment of electrons in various environments, primarily associated with the underlying defect structures, particularly vacancies. These trapped electrons play a crucial role in augmenting electron conductivity, thereby contributing to an elevated HER performance.

3.
ACS Mater Au ; 3(2): 143-163, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-38089730

ABSTRACT

The security of future energy, hydrogen, is subject to designing high-performance, stable, and low-cost electrocatalysts for hydrogen and oxygen evolution reactions (HERs and OERs), for the realization of efficient overall water splitting. Two-dimensional (2D) metal-organic frameworks (MOFs) introduce a large family of materials with versatile chemical and structural features for a variety of applications, such as supercapacitors, gas storage, and water splitting. Herein, a series of nanocomposites based on NCM/Ni-BDC@NF (N=Ni, C=Co, M:F=Fe, C=Cu, and Z=Zn, BDC: benzene dicarboxylic acid, NF: nickel foam) were directly developed on NF using a facile yet scalable solvothermal method. After coupling, the electronic structure of metallic atoms was well-modulated. Based on the XPS results, for the NCF/Ni-BDC, cationic atoms shifted to higher oxidation states, favorable for the OER. Conversely, for the NCZ/Ni-BDC and NCC/Ni-BDC nanocomposites, cationic atoms shifted to lower oxidation states, advantageous for the HER. The as-prepared NCF/Ni-BDC demonstrated prominent OER performance, requiring only 1.35 and 1.68 V versus a reversible hydrogen electrode to afford 10 and 50 mA cm-2 current densities, respectively. On the cathodic side, NCZ/Ni-BDC exhibited the best HER activity with an overpotential of 170 and 350 mV to generate 10 and 50 mA cm-2, respectively, under 1.0 M KOH medium. In a two-electrode alkaline electrolyzer, the assembled NCZ/Ni-BDC (cathode) ∥ NCF/Ni-BDC (anode) couple demanded a cell voltage of only 1.58 V to produce 10 mA cm-2. The stability of NCF/Ni-BDC toward OER was also exemplary, experiencing a continuous operation at 10, 20, and 50 mA cm-2 for nearly 45 h. Surprisingly, the overpotential after OER stability at 50 mA cm-2 dropped drastically from 450 to 200 mV. Finally, the faradaic efficiencies for the overall water splitting revealed the respective values of 100 and 85% for the H2 and O2 production at a constant current density of 20 mA cm-2.

4.
ACS Appl Energy Mater ; 6(7): 4053-4064, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37064412

ABSTRACT

Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lithiumbis(trifluoromethanesulfonyl)imide (LiTFSI)) concentration on the glass transition (T g), microstructure, phase diagram, free volume, and bulk viscosity, all of which play a significant role in determining the ionic conductivity of the electrolyte, have been systematically studied for PEO-based polymer electrolytes. The branching of PEO widens the liquid phase toward lower salt concentrations, suggesting decreased crystallization and improved ion coordination. At high salt loadings, ion clustering is common for all electrolytes, yet the cluster size and distribution appear to be strongly architecture-dependent. Also, the ionic conductivity is maximized at a salt concentration of [Li/EO ≈ 0.085] for all architectures, and the highly branched polymers displayed as much as three times higher ionic conductivity (with respect to the linear analogue) for the same total molar mass. The architecture-dependent ionic conductivity is attributed to the enhanced free volume measured by positron annihilation lifetime spectroscopy. Interestingly, despite the strong architecture dependence of ionic conductivity, the salt addition in the highly branched architectures results in accelerated yet similar monomeric friction coefficients for these polymers, offering significant potential toward decoupling of conductivity from segmental dynamics of polymer electrolytes, leading to outstanding battery performance.

5.
Inorg Chem ; 62(19): 7273-7282, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37116190

ABSTRACT

Highly efficient and eco-friendly thermoelectric generators rely on low-cost and nontoxic semiconductors with high symmetry and ultralow lattice thermal conductivity κL. We report the rational synthesis of the novel cubic (Ag, Se)-doped Cu2GeTe3 semiconductors. A localized symmetry breakdown (LSB) was found in the composition of Cu1.9Ag0.1GeTe1.5Se1.5 (i.e., CAGTS15) with an ultralow κL of 0.37 W/mK at 723 K, the lowest value outperforming all Cu2GeCh3 (Ch = S, Se, and Te). A joint investigation of synchrotron X-ray techniques identifies the LSB embedded into the cubic CAGTS15 host matrix. This LSB is an Ångström-scale orthorhombic symmetry unit, characteristic of multiple bond lengths, large anisotropic atomic displacements, and distinct local chemical coordination of anions. Computational results highlight that such an unusual orthorhombic symmetry demonstrates low-frequency phonon modes, which become softer and more predominant with increasing temperatures. This unconventional LSB promotes bond complexity and phonon scattering, highly beneficial for extraordinarily low lattice thermal conductivity.

6.
Inorg Chem ; 61(51): 21004-21010, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36520116

ABSTRACT

Manageable thermal expansion (MTE) of metal trifluorides can be achieved by introducing local structure distortion (LSD) in the negative thermal expansion ScF3. However, an open issue is why isostructural TiF3, free of LSD, exhibits positive thermal expansion. Herein, a combined analysis of synchrotron X-ray diffraction, X-ray pair distribution function, and rigorous first-principles calculations was performed to reveal the important role of itinerant electrons in mediating soft phonons and lattice dynamics. Metallic TiF3 demonstrates itinerant electrons and a suppressed Grüneisen parameter γ ≈ -20, while insulating ScF3 absence of itinerant electrons has a considerable γ ≈ -120. With increasing electron doping concentrations in ScF3, soft phonons become hardened and the γ is repressed significantly, identical to TiF3. The presented results update the thermal expansion transition mechanism in framework structure analogues and provide a practical approach to obtaining MTE without inducing sizable structure distortion.

7.
Nanotechnology ; 33(20)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35130527

ABSTRACT

Two-dimensional materials have become the focus of attention of researchers in recent years. The demand for two-dimensional materials is increasing day by day, especially with the inadequacy of graphene in optical applications. In this context, the optical and electrical characteristics of the PVP:GaSe thin film nanocomposites were investigated. The surface morphologies of the samples were characterized by SEM, the thin film thicknesses and refractive index parameters were measured by the Ellipsometer method, the structural characteristics were obtained by XRD, and Raman and PL spectroscopy was used to determine the optical characteristics. Critical parameters of Au/PVP:GaSe/n-Si photodetector were calculated under various illumination intensities. It is observed that photodetector with PVP:%5GaSe thin film has the best performance results. According to the experimental results, its responsivity, external quantum efficiency, and detectivity values are 0.485 A W-1, %86, and 1.14 × 107cm Hz1/2W-1respectively.

8.
ACS Omega ; 6(48): 33024-33032, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34901654

ABSTRACT

Enormous efforts have been dedicated to engineering low-cost and efficient electrocatalysts for both hydrogen evolution and oxygen evolution reactions (HER and OER, respectively). For this, the current contribution reports the successful synthesis of binary/ternary metal ferrites (Co x Ni1-x Ferrite; x = 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0) by a simple one-step microwave technique and subsequently discusses its chemical and electrochemical properties. The X-ray diffraction analysis substantiated the phase purity of the as-obtained catalysts with various compositions. Additionally, the morphology of the nanoparticles was identified via transmission electron microscopy. Further, the vibrating sample magnetometer justified the ferromagnetic character of the as-prepared products. The electrochemical measurements revealed that the as-prepared materials required the overpotentials of 422-600 and 419-467 mV for HER and OER, respectively, to afford current densities of 10 mA cm-2. In the general sense, Ni cation substitution with Co influenced favorably toward both HER and OER. Among all synthesized electrocatalysts, Co0.9Ni0.1Ferrite displayed the highest performance in terms of OER in 1 M KOH solution, which is related to the synergistic effect of multiple parameters including the optimal substitution amount of Co, the highest Brunauer-Emmett-Teller surface area, the smallest particle size among all samples (26.71 nm), and the lowest charge transfer resistance. The successful synthesis of ternary ferrites carried out for the first time via a microwave-assisted auto-combustion route opens up a new path for their applications in renewable energy technologies.

9.
Inorg Chem ; 60(24): 19457-19466, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34855373

ABSTRACT

Design and development of efficient, economical, and durable electrocatalysts for oxygen evolution reaction (OER) are of key importance for the realization of electrocatalytic water splitting. To date, VB2 and its derivatives have not been considered as electrocatalysts for water oxidation. Herein, we developed a series of electrocatalysts with a formal composition of V1-xCoxB2 (x = 0, 0.05, 0.1, and 0.2) and employed them in an oxygen-evolving reaction. The incorporation of Co into the VB2 structure caused a dramatic transformation in the morphology, resulting in a super low overpotential of 200 mV at 10 mA cm-2 for V0.9Co0.1B2 and displaying much greater performance compared to the noble-metal catalyst RuO2 (290 mV). The longevity of the best-performing sample was assessed through the exposure to the current density of 10 mA cm-2, showing relative durability after 12 h under 1 M KOH conditions. The Faradaic efficiency tests corroborated the initiation of OER at 1.45 V (vs RHE) and suggested a potential region of 1.50-1.55 V (vs RHE) as the practical OER region. The facile electron transfer between metal(s)-metalloid, high specific surface area, and availability of active oxy-hydroxy species on the surface were identified as the major contributors to this superior OER performance.

10.
Nat Commun ; 12(1): 4793, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34373453

ABSTRACT

Thermoelectrics enable waste heat recovery, holding promises in relieving energy and environmental crisis. Lillianite materials have been long-term ignored due to low thermoelectric efficiency. Herein we report the discovery of superior thermoelectric performance in Pb7Bi4Se13 based lillianites, with a peak figure of merit, zT of 1.35 at 800 K and a high average zT of 0.92 (450-800 K). A unique quality factor is established to predict and evaluate thermoelectric performances. It considers both band nonparabolicity and band gaps, commonly negligible in conventional quality factors. Such appealing performance is attributed to the convergence of effectively nested conduction bands, providing a high number of valley degeneracy, and a low thermal conductivity, stemming from large lattice anharmonicity, low-frequency localized Einstein modes and the coexistence of high-density moiré fringes and nanoscale defects. This work rekindles the vision that Pb7Bi4Se13 based lillianites are promising candidates for highly efficient thermoelectric energy conversion.

11.
Turk J Chem ; 45(2): 323-332, 2021.
Article in English | MEDLINE | ID: mdl-34104047

ABSTRACT

Herein, titanium (Ti3+) self-doped strontium titanate (SrTiO3), so-called blue SrTiO3, with a bandgap of 2.6 eV and favorable photocatalytic characteristics was fabricated through a facile and effective method. For electrochemical investigations, the electrophoretic deposition was applied to produce SrTiO3 thin films on (fluorine-doped tin oxide) FTO conductive substrates. The electrophoretic voltage of 20 V and a process duration of 10 min were optimized to reach transparent and uniform coatings on FTO. The blue SrTiO3 reveals lower resistance (charge transfer resistance of 6.38 Ω cm-2) and higher electron mobility (current density value of 0.25 mA cm-2) compared to a pure SrTiO3 electrode. These findings may provide new insights for developing high-performance visible light photocatalysts.

12.
Sci Rep ; 11(1): 3337, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33558628

ABSTRACT

Growing environmental problems along with the galloping rate of population growth have raised an unprecedented challenge to look for an ever-lasting alternative source of energy for fossil fuels. The eternal quest for sustainable energy production strategies has culminated in the electrocatalytic water splitting process integrated with renewable energy resources. The successful accomplishment of this process is thoroughly subject to competent, earth-abundant, and low-cost electrocatalysts to drive the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), preferably, in the same electrolyte. The present contribution has been dedicated to studying the synthesis, characterization, and electrochemical properties of newfangled electrocatalysts with the formal composition of Mg1-xTMxB2 (x = 0.025, 0.05, and 0.1; TM (transition metal) = Fe and Co) primarily in HER as well as OER under 1 M KOH medium. The electrochemical tests revealed that among all the metal-doped MgB2 catalysts, Mg0.95Co0.05B2 has the best HER performance showing an overpotential of 470 mV at - 10 mA cm-2 and a Tafel slope of 80 mV dec-1 on account of its high purity and fast electron transport. Further investigation shed some light on the fact that Fe concentration and overpotential for HER have adverse relation meaning that the highest amount of Fe doping (x = 0.1) displayed the lowest overpotential. This contribution introduces not only highly competent electrocatalysts composed of low-cost precursors for the water-splitting process but also a facile scalable method for the assembly of highly porous electrodes paving the way for further stunning developments in the field.

13.
Turk J Chem ; 44(6): 1642-1654, 2020.
Article in English | MEDLINE | ID: mdl-33488259

ABSTRACT

In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 °C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of -1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm-2) compared to the undoped TiO2 nanotube arrays (0.19 mA cm-2). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.

14.
Adv Mater ; : e1802016, 2018 Jul 08.
Article in English | MEDLINE | ID: mdl-29984538

ABSTRACT

Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl ) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid-fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2 Te3 alloys. A segmented leg of melt-centrifuged Bi0.5 Sb1.5 Te3 and Bi0.3 Sb1.7 Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323-523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high-efficiency porous thermoelectric materials through an unconventional melt-centrifugation technique.

15.
J Am Chem Soc ; 140(13): 4477-4480, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29558621

ABSTRACT

The local symmetry, beyond the averaged crystallographic structure, tends to bring unusual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve controllable thermal expansion in ScF3 nanoscale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engineered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0 × 10-8/K up to 675 K. This mechanism is investigated by the joint analysis of atomic pair distribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nanoscale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in rhombohedral ScF3. The present work opens an untraditional chemical modification route to achieve controllable thermal expansion by breaking local symmetries in materials.

16.
Inorg Chem ; 57(4): 2260-2268, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29411610

ABSTRACT

The field of mineralogy represents an area of untapped potential for the synthetic chemist, as there are numerous structure types that can be utilized to form analogues of mineral structures with useful optoelectronic properties. In this work, we describe the synthesis and characterization of two novel quaternary sulfides A1+xSn2-xBi5+xS10 (A = Li+, Na+). Though not natural minerals themselves, both compounds adopt the pavonite structure, which crystallizes in the C2/m space group and consists of two connected, alternating defect rock-salt slabs of varying thicknesses to create a three-dimensional lattice. Despite their commonalities in structure, their crystallography is noticeably different, as both structures have a heavy degree of site occupancy disorder that affects the actual positions of the atoms. The differences in site occupancy alter their electronic structures, with band gap values of 0.31(2) eV and 0.07(2) eV for the lithium and sodium analogues, respectively. LiSn2Bi5S10 exhibits ultralow thermal conductivity of 0.62 W m-1 K-1 at 723 K, and this result is corroborated by phonon dispersion calculations. This structure type is a promising host candidate for future thermoelectric materials investigation, as these materials have narrow band gaps and intrinsically low thermal conductivities.

17.
Adv Sci (Weinh) ; 4(11): 1700259, 2017 11.
Article in English | MEDLINE | ID: mdl-29201622

ABSTRACT

Bi2Te3 thermoelectric materials are utilized for refrigeration for decades, while their application of energy harvesting requires stable thermoelectric and mechanical performances at elevated temperatures. This work reveals that a steady zT of ≈0.85 at 200 to 300 °C can be achieved by doping small amounts of copper iodide (CuI) in Bi2Te2.2Se0.8-silicon carbide (SiC) composites, where SiC nanodispersion enhances the flexural strength. It is found that CuI plays two important roles with atomic Cu/I dopants and CuI precipitates. The Cu/I dopants show a self-tuning behavior due to increasing solubility with increasing temperatures. The increased doping concentration increases electrical conductivity at high temperatures and effectively suppresses the intrinsic excitation. In addition, a large reduction of lattice thermal conductivity is achieved due to the "in situ" CuI nanoprecipitates acting as phonon-scattering centers. Over 60% reduction of bipolar thermal conductivity is achieved, raising the maximum useful temperature of Bi2Te3 for substantially higher efficiency. For module applications, the reported materials are suitable for segmentation with a conventional ingot. This leads to high device ZT values of ≈0.9-1.0 and high efficiency up to 9.2% from 300 to 573 K, which can be of great significance for power generation from waste heat.

18.
ACS Appl Mater Interfaces ; 9(46): 40488-40496, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29098851

ABSTRACT

Both n- and p-type lead telluride (PbTe)-based thermoelectric (TE) materials display high TE efficiency, but the low fracture strength may limit their commercial applications. To find ways to improve these macroscopic mechanical properties, we report here the ideal strength and deformation mechanism of PbTe using density functional theory calculations. This provides structure-property relationships at the atomic scale that can be applied to estimate macroscopic mechanical properties such as fracture toughness. Among all the shear and tensile paths that are examined here, we find that the lowest ideal strength of PbTe is 3.46 GPa along the (001)/⟨100⟩ slip system. This leads to an estimated fracture toughness of 0.28 MPa m1/2 based on its ideal stress-strain relation, which is in good agreement with our experimental measurement of 0.59 MPa m1/2. We find that softening and breaking of the ionic Pb-Te bond leads to the structural collapse. To improve the mechanical strength of PbTe, we suggest strengthening the structural stiffness of the ionic Pb-Te framework through an alloying strategy, such as alloying PbTe with isotypic PbSe or PbS. This point defect strategy has a great potential to develop high-performance PbTe-based materials with robust mechanical properties, which may also be applied to other materials and applications.

19.
Phys Rev Lett ; 119(8): 085501, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952748

ABSTRACT

Bismuth telluride (Bi_{2}Te_{3}) based thermoelectric (TE) materials have been commercialized successfully as solid-state power generators, but their low mechanical strength suggests that these materials may not be reliable for long-term use in TE devices. Here we use density functional theory to show that the ideal shear strength of Bi_{2}Te_{3} can be significantly enhanced up to 215% by imposing nanoscale twins. We reveal that the origin of the low strength in single crystalline Bi_{2}Te_{3} is the weak van der Waals interaction between the Te1 coupling two Te1─Bi─Te2─Bi─Te1 five-layer quint substructures. However, we demonstrate here a surprising result that forming twin boundaries between the Te1 atoms of adjacent quints greatly strengthens the interaction between them, leading to a tripling of the ideal shear strength in nanotwinned Bi_{2}Te_{3} (0.6 GPa) compared to that in the single crystalline material (0.19 GPa). This grain boundary engineering strategy opens a new pathway for designing robust Bi_{2}Te_{3} TE semiconductors for high-performance TE devices.

20.
Inorg Chem ; 56(18): 10840-10843, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28880085

ABSTRACT

Scandium fluoride (ScF3) exhibits a pronounced negative thermal expansion (NTE), which can be suppressed and ultimately transformed into an isotropic zero thermal expansion (ZTE) by partially substituting Sc with Fe in (Sc0.8Fe0.2)F3 (Fe20). The latter displays a rather small coefficient of thermal expansion of -0.17 × 10-6/K from 300 to 700 K. Synchrotron X-ray and neutron pair distribution functions confirm that the Sc/Fe-F bond has positive thermal expansion (PTE). Local vibrational dynamics based on extended X-ray absorption fine structure indicates a decreased anisotropy of relative vibration in the Sc/Fe-F bond. Combined analysis proposes a delicate balance between the counteracting effects of the chemical bond PTE and NTE from transverse vibration. The present study extends the scope of isotropic ZTE compounds and, more significantly, provides a complete local vibrational dynamics to shed light on the ZTE mechanism in chemically tailored NTE compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...