Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 130: 12-21, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37419077

ABSTRACT

Various aspects of visual functioning, including motion perception, change with age. Yet, there is a lack of comprehensive understanding of age-related alterations at different stages of motion processing and in each motion system. To understand the effects of aging on second-order motion processing, we investigated optomotor responses (OMR) in younger and older wild-type (AB-strain) and acetylcholinesterase (achesb55/+) mutant zebrafish. The mutant fish with decreased levels of acetylcholinesterase have been shown to have delayed age-related cognitive decline. Compared to previous results on first-order motion, we found distinct changes in OMR to second-order motion. The polarity of OMR was dependent on age, such that second-order stimulation led to mainly negative OMR in the younger group while older zebrafish had positive responses. Hence, these findings revealed an overall aging effect on the detection of second-order motion. Moreover, neither the genotype of zebrafish nor the spatial frequency of motion significantly changed the response magnitude. Our findings support the view that age-related changes in motion detection depend on the activated motion system.

2.
Brain Struct Funct ; 226(9): 3067-3081, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33779794

ABSTRACT

Metacontrast masking is a powerful illusion to investigate the dynamics of perceptual processing and to control conscious visual perception. However, the neural mechanisms underlying this fundamental investigative tool are still debated. In the present study, we examined metacontrast masking across different contrast polarities by employing a contour discrimination task combined with EEG (Electroencephalography). When the target and mask had the same contrast polarity, a typical U-shaped metacontrast function was observed. A change in mask polarity (i.e., opposite mask polarity) shifted this masking function to a monotonic increasing function such that the target visibility was strongly suppressed at stimulus onset asynchronies less than 50 ms. This transition in metacontrast function has been typically interpreted as an increase in intrachannel inhibition of the sustained activities functionally linked to object visibility and identity. Our EEG analyses revealed an early (160-300 ms) and a late (300-550 ms) spatiotemporal cluster associated with this effect of polarity. The early cluster was mainly over occipital and parieto-occipital scalp sites. On the other hand, the later modulations of the evoked activities were centered over parietal and centro-parietal sites. Since both of these clusters were beyond 160 ms, the EEG results point to late recurrent inhibitory mechanisms. Although the findings here do not directly preclude other proposed mechanisms for metacontrast, they highlight the involvement of recurrent intrachannel inhibition in metacontrast masking.


Subject(s)
Form Perception , Perceptual Masking , Consciousness , Contrast Sensitivity , Electroencephalography , Visual Perception
3.
Neurobiol Aging ; 98: 21-32, 2021 02.
Article in English | MEDLINE | ID: mdl-33227566

ABSTRACT

Understanding the principles underlying age-related changes in motion perception is paramount for improving the quality of life and health of older adults. However, the mechanisms underlying age-related alterations in this aspect of vision, which is essential for survival in a dynamic world, still remain unclear. Using optomotor responses to drifting gratings, we investigated age-related changes in motion detection of adult zebrafish (wild-type/AB-strain and achesb55/+ mutants with decreased levels of acetylcholinesterase). Our results pointed out negative optomotor responses that significantly depend on the spatial frequency and contrast level of stimulation, providing supporting evidence for the visual motion-driven aspect of this behavior mainly exhibited by adult zebrafish. Although there were no significant main effects of age and genotype, we found a significant three-way interaction between contrast level, age, and genotype. In the contrast domain, the changes in optomotor responses and thus in the detection of motion direction were age- and genotype-specific. Accordingly, these behavioral findings suggest a strong but complicated relationship between visual motion characteristics and the cholinergic system during neural aging.


Subject(s)
Acetylcholine/physiology , Aging/physiology , Behavior, Animal/physiology , Genotype , Motion Perception/physiology , Motor Activity/physiology , Vision, Ocular/physiology , Visual Perception/physiology , Zebrafish/genetics , Zebrafish/physiology , Animals , Female , Male , Photic Stimulation , Receptors, Cholinergic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...