Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; : 1-26, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859628

ABSTRACT

Docetaxel is one of the most effective and safe chemotherapy drugs according to the World Health Organization, but its clinical use has been discontinued due to its various side effects. To reduce these side effects, the amount of docetaxel drug should be kept at the most effective level, it should be monitored in body fluids. Due to the limitations of traditional analytical methods used for this purpose, such as expensive and low sensitivity, labor-intensive and time-consuming complex preliminary preparation, efficient methods are required for the determination of the docetaxel level in the body. The increasing demand for the development of personalized therapy has recently spurred significant research into biosensors for the detection of drugs and other chemical compounds. In this study, an electrochemical-based portable nanobiosensor system was developed for the rapid, low-cost, and sensitive determination of docetaxel. In this context, mg-p(HEMA)-IMEO nanoparticles to be used as nanobiosensor bioactive layer was synthesized, characterized, and docetaxel determination conditions were optimized. According to the results obtained, the developed nanobiosensor system can detect docetaxel with a sensitivity of 2.22 mg/mL in a wide calibration range of 0.25-10 mg/mL, in only 15 min, in mixed media such as commercially available artificial blood serum and urine. determined. We concluded that the developed nanobiosensor system can be successfully used in routine drug monitoring as a low-cost biomedical device capable of direct, rapid, and specific drug determination within the scope of personalized treatment, providing point-of-care testing.


Therapeutic drug monitoring on-site has the potential to significantly save healthcare expenditures while also improving patient outcomes.Chromatography's applicability as a routine procedure is restricted by its lack of standardization, expensive equipment, lengthy turnaround times, and labor-intensive sample preparation.Overcoming these drawbacks, nanobiosensors provide an inexpensive, user-friendly, on-site analytical approach to fully explore the possibilities of therapeutic drug monitoring.

2.
Cell Mol Life Sci ; 78(23): 7663-7679, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34698882

ABSTRACT

Endothelial cells (ECs) within the microvasculature of brown adipose tissue (BAT) are important in regulating the plasticity of adipocytes in response to increased metabolic demand by modulating the angiogenic response. However, the mechanism of EC-adipocyte crosstalk during this process is not completely understood. We used RNA sequencing to profile microRNAs derived from BAT ECs of obese mice and identified an anti-angiogenic microRNA, miR-409-3p. MiR-409-3p overexpression inhibited EC angiogenic properties; whereas, its inhibition had the opposite effects. Mechanistic studies revealed that miR-409-3p targets ZEB1 and MAP4K3. Knockdown of ZEB1/MAP4K3 phenocopied the angiogenic effects of miR-409-3p. Adipocytes co-cultured with conditioned media from ECs deficient in miR-409-3p showed increased expression of BAT markers, UCP1 and CIDEA. We identified a pro-angiogenic growth factor, placental growth factor (PLGF), released from ECs in response to miR-409-3p inhibition. Deficiency of ZEB1 or MAP4K3 blocked the release of PLGF from ECs and PLGF stimulation of 3T3-L1 adipocytes increased UCP1 expression in a miR-409-3p dependent manner. MiR-409-3p neutralization improved BAT angiogenesis, glucose and insulin tolerance, and energy expenditure in mice with diet-induced obesity. These findings establish miR-409-3p as a critical regulator of EC-BAT crosstalk by modulating a ZEB1-MAP4K3-PLGF signaling axis, providing new insights for therapeutic intervention in obesity.


Subject(s)
Adipose Tissue, Brown/pathology , Insulin Resistance , MicroRNAs/genetics , Neovascularization, Pathologic/pathology , Placenta Growth Factor/metabolism , Protein Serine-Threonine Kinases/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Adipose Tissue, Brown/metabolism , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Placenta Growth Factor/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Zinc Finger E-box-Binding Homeobox 1/genetics
3.
Cell Rep ; 33(13): 108550, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378664

ABSTRACT

CD4+ T cells regulate inflammation and metabolism in obesity. An imbalance of CD4+ T regulatory cells (Tregs) is critical in the development of insulin resistance and diabetes. Although cytokine control of this process is well understood, transcriptional regulation is not. KLF10, a member of the Kruppel-like transcription factor family, is an emerging regulator of immune cell function. We generated CD4+-T-cell-specific KLF10 knockout (TKO) mice and identified a predisposition to obesity, insulin resistance, and fatty liver due to defects of CD4+ Treg mobilization to liver and adipose tissue depots and decreased transforming growth factor ß3 (TGF-ß3) release in vitro and in vivo. Adoptive transfer of wild-type CD4+ Tregs fully rescued obesity, insulin resistance, and fatty liver. Mechanistically, TKO Tregs exhibit reduced mitochondrial respiration and glycolysis, phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR signaling, and consequently impaired chemotactic properties. Collectively, our study identifies CD4+ T cell KLF10 as an essential regulator of obesity and insulin resistance by altering Treg metabolism and mobilization.


Subject(s)
Early Growth Response Transcription Factors/genetics , Early Growth Response Transcription Factors/metabolism , Fatty Liver/genetics , Insulin Resistance , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Obesity/genetics , Obesity/metabolism , T-Lymphocytes, Regulatory/metabolism , Adipose Tissue/metabolism , Animals , Cells, Cultured , Fatty Liver/metabolism , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Inflammation/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Signal Transduction , Transforming Growth Factor beta3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...