Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(33)2024 May 28.
Article in English | MEDLINE | ID: mdl-38723610

ABSTRACT

The self-powered PVP-Co@C nanofibers/n-GaAs heterojunction photodetector (HJPD) was fabricated by electrospinning of the nanofibers onto GaAs. An excellent rectification ratio of 6.60 × 106was obtained fromI-Vmeasurements of the device in the dark. TheI-Vmeasurements of the fabricated device under 365 nm, 395 nm and 850 nm lights, as well asI-Vmeasurements in visible light depending on the light intensity, were performed. The HJPD demonstrated excellent photodetection performance in terms of a good responsivity of âˆ¼225 mA W-1(at -1.72 V) and at zero bias, an impressive detectivity of 6.28 × 1012Jones, and a high on/off ratio of 8.38 × 105, all at 365 nm wavelength. In addition, the maximum external quantum efficiency and NPDR values were 3495% (V = -1.72 V) and 2.60 × 1010W-1(V= 0.0 V), respectively, while the minimum NEP value was ∼10-14W.Hz-1/2for 365 nm atV= 0.V volts. The HJPD also exhibited good long-term stability in air after 30 d without any encapsulation.

2.
Nanotechnology ; 35(33)2024 May 30.
Article in English | MEDLINE | ID: mdl-38759632

ABSTRACT

This study provided a promising way to fabricate low-cost and high-performance Poly (vinyl alcohol)-reduced graphene oxide (PVA-RGO) nanofibers/n-Si heterojunction photodetector. For this purpose, the hybrid heterojunction with a very-high rectification ratio (2.4 × 106) was achieved by successfully coating PVA-RGO nanofibers on n-Si wafer by electrospinning method. When the electro-optical analysis of the fabricated heterojunction photodetector under visible light depending on the light intensity, ultraviolet (UV) and infrared (IR) lights was examined in detail, it was observed that the photodetector exhibited both self-powered behavior and very high photo-response under each light sources. However, the highest optical performance was obtained under UV (365 nm) originated from PVA-RGO layer and IR (850 nm) light from both interfacial states between PVA-RGO nanofibers and Si and from Si layer. Under 365 nm UV light, the maximum performance values of R, D, ON/OFF ratio, normalized photo-dark-current ratio and external quantum efficiency (%) were obtained as 688 mA W-1, 1.15 × 1015Jones, 2.49 × 106, 8.28 × 1010W-1and 234%, respectively.

3.
J Colloid Interface Sci ; 473: 172-81, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27078739

ABSTRACT

Monodisperse 8nm Fe3O4 nanoparticles (NPs) were synthesized by the thermal decomposition of iron(III) acetylacetonate in oleylamine and then were deposited onto n-type silicon wafer having the Al ohmic contact. Next, the morphology of the Fe3O4 NPs were characterized by using TEM and XRD. The optical properties of Fe3O4 NPs film was studied by UV-Vis spectroscopoy and its band gap was calculated to be 2.16eV. Au circle contacts with 7.85×10(-3)cm(2) area were provided on the Fe3O4 film via evaporation at 10(-5)Torr and the Au/Fe3O4 NPs/n-Si/Al heterojunction device were fabricated. The temperature-dependent junction parameters of Au/Fe3O4/n-Si/Al device including ideality factor, barrier height and series resistance were calculated by using the I-V characteristics in a wide temperature range of 40-300K. The results revealed that the ideality factor and series resistance increased by the decreasing temperature while the barrier height decreases. The Richardson constant of Au/Fe3O4/n-Si/Al device was calculated to be 2.17A/K(2)cm(2) from the I-V characteristics. The temperature dependence of Au/Fe3O4/n-Si/Al heterojunction device showed a double Gaussian distribution, which is caused by the inhomogeneities characteristics of Fe3O4/n-Si heterojunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...