Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Oncol ; 39(12): 229, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175689

ABSTRACT

The aim of this study was to determine the effects of pre-low-dose irradiation followed by gallic acid (GA) on cell viability and cellular energetic state of leukemic K562 and K562/Dox cells. The cells were irradiated with 0.02, 0.05, and 0.1 Gy of X-rays. For determining cell viability, pre-low-dose irradiation was followed by 10 or 100 µM GA at 24 h post-irradiation, and the cell viability was then determined at 48 h post-irradiation. For cellular energetic state, pre-low-dose irradiation was followed by 10 or 100 µM GA at 1.5 h post-irradiation and the mitochondrial activity, mitochondrial membrane potential (ΔΨm), and ATP level were determined at 3 h post-irradiation. The % cell viability was significantly decreased in both cells that were irradiated with X-rays followed by treatment with 10 or 100 µM GA at 24 h post-irradiation, when compared with control group. However, this did not happen when compared with GA alone without any pre-low-dose irradiation. The mitochondrial activity had significantly decreased in 10 µM GA-treated K562 cells and the mitochondrial activity, ΔΨm, and ATP levels had significantly decreased in 10 µM GA-treated K562/Dox cells after irradiation to X-rays when compared with GA alone group. In addition, the ΔΨm and ATP levels was significantly decreased in only 100 µM GA-treated K562/Dox cells, but was not decreased in 100 µM GA-treated K562 cells after exposure to X-rays. These findings suggest that pre-low-dose irradiation followed by GA could not kill K562 and K562/Dox cells, but could improve cellular energetic damage of GA effects possibly through mitochondrial impairment.


Subject(s)
Gallic Acid , Mitochondria , Adenosine Triphosphate , Cell Survival , Gallic Acid/pharmacology , Humans , K562 Cells
2.
Oncol Rep ; 46(4)2021 Oct.
Article in English | MEDLINE | ID: mdl-34476509

ABSTRACT

Leukemia is a common malignancy affecting humans worldwide. Pirarubicin (Pira) is one of the anticancer agents used for the treatment of leukemia. Although Pira is effective, drug resistance may develop in cancer cells exposed to this drug, whereas the combination of natural products with Pira may help to overcome this problem. The aim of the present study was to focus on the effect of gallic acid (GA) on the anticancer activity of Pira in K562 leukemia cells and K562/doxorubicin (Dox)­resistant leukemia cells in order to investigate the possible underlying mechanisms. The cell viability, mitochondrial activity, mitochondrial membrane potential (ΔΨm) and ATP levels were assessed in living K562 and K562/Dox cancer cells following treatment with GA/Pira combination, GA alone or Pira alone. P­glycoprotein­mediated efflux of Pira was determined in GA­treated K562/Dox cancer cells. The results demonstrated that GA/Pira combination decreased cell viability, mitochondrial activity, ΔΨm and ATP levels in K562 and K562/Dox cancer cells in a GA concentration­dependent manner compared with non­treated or Pira­treated cells. GA inhibited P­glycoprotein­mediated efflux of Pira in GA­treated K562/Dox cancer cells. Therefore, GA enhanced the anticancer effect of Pira on K562 and K562/Dox cancer cells through cellular energy status impairment, and was able to reverse drug resistance in living K562/Dox cancer cells by inhibiting the function of P­glycoprotein.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Survival/drug effects , Doxorubicin/analogs & derivatives , Drug Resistance, Neoplasm/drug effects , Gallic Acid/pharmacology , Leukemia/drug therapy , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Synergism , Humans , K562 Cells
3.
J Fluoresc ; 31(3): 747-754, 2021 May.
Article in English | MEDLINE | ID: mdl-33638767

ABSTRACT

Oral cancer disease is among the most common cancers in the world and are associated with mortality and morbidity. The characterization of saliva samples may help to distinguish patients with oral cancer disease from normal subjects. To characterize spectra of saliva samples from normal subjects and oral cancer patients by use of fluorescence, absorption, and 1H-NMR spectroscopy. Whole unstimulated saliva samples were collected from patients with oral cancer disease and normal subjects. The saliva samples were analyzed by absorption, fluorescence and 1H-NMR spectroscopic techniques. The characteristic spectra of saliva samples from patients with oral cancer disease and normal subjects were compared. For fluorescence spectroscopic studies, six fluorophores were found in saliva samples. Autofluorescence emission spectra and synchronous spectra of saliva were different between normal subjects and oral cancer patients. For absorption spectroscopic studies, the typical absorption spectra of saliva samples from normal subjects and oral cancer patients were also different in absorption intensity, 1st and 2nd derivative of absorption spectra values. For 1H-NMR studies, nine metabolites and four metabolites were found in saliva samples taken from normal subjects and oral cancer patients, respectively. The metabolic profiles of saliva samples from normal subjects and oral cancer patients were not similar. The characteristic spectra of saliva samples from normal subjects and oral cancer patients were found. These results showed differences in the spectra of saliva samples between both that groups. The spectra from each spectroscopic techniques could determine a candidate saliva biomarkers for distinguishing patients with oral cancer disease from normal subjects.


Subject(s)
Mouth Neoplasms , Saliva/chemistry , Spectrometry, Fluorescence , Case-Control Studies , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...