Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(3): e0404422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37039708

ABSTRACT

Early detection of microbial pathogens causing respiratory tract infection plays a crucial role in clinical management. The BioCode Respiratory Pathogen Panel (BioCode RPP) utilizes reverse transcriptase PCR (RT-PCR) in combination with barcoded magnetic beads to amplify, detect, and identify respiratory pathogens. This panel qualitatively detects and identifies 14 viruses, including influenza virus A with H1 pdm09, H1, and H3 subtyping; influenza B; respiratory syncytial virus (RSV); human metapneumovirus; parainfluenza virus 1; parainfluenza virus 2; parainfluenza virus 3; parainfluenza virus 4; coronavirus (229E, NL63, OC43, and HKU1); adenovirus; and human rhinovirus/enterovirus, and 3 bacteria, including Chlamydia pneumoniae, Mycoplasma pneumoniae, and Bordetella pertussis. Reproducibility, which was assessed with contrived specimens containing 12 targets at 3 clinical sites, with 2 operators at each site for 5 days, was 99.4% for Flu A H3 and Flu B, 98.9% for RSV, and 100% for the remaining 9 targets assayed. A multicenter clinical trial evaluated the performance of the BioCode RPP with 2,647 nasopharyngeal swab specimens from 5 geographically distinct sites and revealed comparable performance between the BioCode RPP and FilmArray Respiratory Panel (FA-RP). Specifically, the positive percent agreements (PPAs) for various pathogens ranged between 80.8% and 100% compared with the FA-RP (1.7 and 2.0). Negative percent agreement ranged from 98.4% to 100% for BioCode RPP. The BioCode RPP also offers scalable automated testing capability of up to 96 specimens in a single run with total sample-to-result time under 5 h. The invalid rate of the BioCode RPP on initial testing was 1.0% (26/2,649). IMPORTANCE Early detection of microbial pathogens causing respiratory tract infection plays a crucial role in clinical management. The BioCode Respiratory Pathogen Panel (BioCode RPP) is a high-throughput test that utilizes RT-PCR in combination with barcoded magnetic beads to amplify, detect, and identify 17 respiratory pathogens, including 14 viruses and 3 bacteria. This study summarizes data generated from a multicenter clinical trial evaluating the performance of the BioCode RPP on 2,647 nasopharyngeal swab specimens from five geographically distinct sites.


Subject(s)
Paramyxoviridae Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , Humans , Virus Diseases/diagnosis , Reproducibility of Results , Viruses/genetics , Bacteria , Respiratory Tract Infections/microbiology , Nasopharynx
2.
Genome Res ; 15(5): 641-54, 2005 May.
Article in English | MEDLINE | ID: mdl-15837808

ABSTRACT

A collection of 4457 Saccharomyces cerevisiae mutants deleted for nonessential genes was screened for mutants with increased or decreased mobilization of the gypsylike retroelement Ty3. Of these, 64 exhibited increased and 66 decreased Ty3 transposition compared with the parental strain. Genes identified in this screen were grouped according to function by using GOnet software developed as part of this study. Gene clusters were related to chromatin and transcript elongation, translation and cytoplasmic RNA processing, vesicular trafficking, nuclear transport, and DNA maintenance. Sixty-six of the mutants were tested for Ty3 proteins and cDNA. Ty3 cDNA and transposition were increased in mutants affected in nuclear pore biogenesis and in a subset of mutants lacking proteins that interact physically or genetically with a replication clamp loader. Our results suggest that nuclear entry is linked mechanistically to Ty3 cDNA synthesis but that host replication factors antagonize Ty3 replication. Some of the factors we identified have been previously shown to affect Ty1 transposition and others to affect retroviral budding. Host factors, such as these, shared by distantly related Ty retroelements and retroviruses are novel candidates for antiviral targets.


Subject(s)
Fungal Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Integration Host Factors/genetics , Mutation/genetics , Retroelements/genetics , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics , Blotting, Southern , Chromatin/genetics , Computational Biology/methods , DNA Mutational Analysis , DNA, Complementary/genetics , Nuclear Pore/genetics , Nuclear Pore/metabolism , Transcription, Genetic/genetics
3.
Genetics ; 168(3): 1159-76, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15579677

ABSTRACT

The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNA(Val(AAC)) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets.


Subject(s)
Recombination, Genetic/physiology , Retroelements , Saccharomyces cerevisiae/genetics , Adaptor Proteins, Signal Transducing , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , DNA, Complementary , Mutation , RNA, Transfer, Val/genetics , RNA-Directed DNA Polymerase/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics
4.
Mol Microbiol ; 49(2): 501-15, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12828645

ABSTRACT

The Saccharomyces cerevisiae retrovirus-like element Ty3 inserts specifically into the initiation sites of genes transcribed by RNA polymerase III (pol III). A strain with a disruption of LHP1, which encodes the homologue of autoantigen La protein, was recovered in a screen for mutants defective in Ty3 transposition. Transposition into a target composed of divergent tRNA genes was decreased eightfold. In lhp1 mutants, Ty3 polyproteins were produced at wild-type levels, assembled into virus-like particles (VLPs) and processed efficiently. The amount of cDNA associated with these particles was about half the amount in a wild-type control at early times, but approached the wild-type level after 48 h of induction. Ty3 integration was examined at two genomic tRNA gene families and two plasmid-borne tRNA promoters. Integration was significantly decreased at one of the tRNA gene families, but was only slightly decreased at the second tRNA gene family. These findings suggest that Lhp1p contributes to Ty3 cDNA synthesis, but might also act at a target-specific step, such as integration.


Subject(s)
Recombination, Genetic , Retroelements/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Autoantigens , DNA, Complementary/metabolism , RNA Polymerase III/metabolism , RNA, Transfer/genetics , Ribonucleoproteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , SS-B Antigen
SELECTION OF CITATIONS
SEARCH DETAIL
...