Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 192(3): 371-377, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33382430

ABSTRACT

In this study, the total exposure due to signals within GSM 900, GSM 1800, CDMA-1900 and 3G-2100 frequency bands at 200 m from the foot of 120, 100 and 80 base station masts in the Nigerian cities of Lagos, Ibadan and Abuja, respectively, was assessed. A calibrated hand-held spectrum analyser was used to measure the level of power (in dBm) of each signal within the mobile frequency bands. The exposure quotient associated with the combine electric field strengths from the various frequency bands in each city was estimated. The maximum value of total electric field strength at each point in Lagos, Ibadan and Abuja was 0.83 V/m, 0.53 V/m and 1.63 V/m, respectively. This study shows that the exposure quotient due to the simultaneous exposure to the four bands of mobile communication signals in each city is far less than one, as recommend by International Commission on Non-Ionizing Radiation Protection.


Subject(s)
Cell Phone , Electromagnetic Fields , Radio Waves , Cities , Communication , Environmental Exposure , Nigeria , Radio Waves/adverse effects
2.
Radiat Prot Dosimetry ; 156(4): 424-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23625903

ABSTRACT

The variations of radiofrequency (RF) radiation power density with distance around some mobile phone base stations (BTSs), in ten randomly selected locations in Ibadan, western Nigeria, were studied. Measurements were made with a calibrated hand-held spectrum analyser. The maximum Global System of Mobile (GSM) communication 1800 signal power density was 323.91 µW m(-2) at 250 m radius of a BTS and that of GSM 900 was 1119.00 µW m(-2) at 200 m radius of another BTS. The estimated total maximum power density was 2972.00 µW m(-2) at 50 m radius of a different BTS. This study shows that the maximum carrier signal power density and the total maximum power density from a BTS may be observed averagely at 200 and 50 m of its radius, respectively. The result of this study demonstrates that exposure of people to RF radiation from phone BTSs in Ibadan city is far less than the recommended limits by International scientific bodies.


Subject(s)
Cell Phone , Electromagnetic Fields , Radiation Monitoring/methods , Radio Waves , Calibration , Cities , Electromagnetic Radiation , Environmental Exposure , Humans , Nigeria , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL