Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
3D Print Addit Manuf ; 11(1): 242-250, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389687

ABSTRACT

Carbon-modified fibrous structures with high biocompatibility have attracted much attention due to their low cost, sustainability, abundance, and excellent electrical properties. However, some carbon-based materials possess low specific capacitance and electrochemical performance, which pose significant challenges in developing electronic microdevices. In this study, we report a microfluidic-based technique of manufacturing alginate hollow microfibers incorporated by water dispersed modified graphene (bovine serum albumin-graphene). These architectures successfully exhibited enhanced conductivity ∼20 times higher than alginate hollow microfibers without any significant change in the inner dimension of the hollow region (220.0 ± 10.0 µm) compared with pure alginate hollow microfibers. In the presence of graphene, higher specific surface permeability, active ion adsorption sites, and shorter pathways were created. These continuous ion transport networks resulted in improved electrochemical performance. The desired electrochemical properties of the microfibers make alginate/graphene hollow fibers an excellent choice for further use in the development of flexible capacitors with the potential to be used in smart health electronics.

2.
Biosens Bioelectron ; 210: 114284, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35462297

ABSTRACT

Real-time and high-throughput cytometric monitoring of neural cells exposed to injury mechanisms is invaluable for in-vitro studies. Electrical impedance spectroscopy via microelectrode arrays is a label-free technique for monitoring of neural growth and their detachment upon death. In this method, the interface material plays a vital role to provide desirable attachment cues for the cell network. Thus, here we demonstrate the electrohydrodynamic patterning of aqueous graphene for microelectrode fabrication. We investigated whether the wrinkled surface morphology of the electrodes fabricated by this deposition method expands their electroactive surface area and thus enables a rapid response time. The nano-scale quality of the graphene lattice is characterized by Raman spectroscopy and Transmittance electron microscopy. N27 rat dopaminergic neural cells were cultured on the chips and the surface morphology of the microelectrodes during cellular growth was investigated by Scanning electrode spectroscopy. Attachment of the neural population on the graphene microelectrodes was parametrized and the change in the impedance spectrum of this cell population was quantified at 10 Hz to 10 kHz frequencies along with the change in TUBB3 gene expression. The viability test of the cell population on the biosensor demonstrated no significant difference in comparison to the control, and a cell density of 2289 cell/mm2 was achieved. As a proof of concept, the confluent N27 cell population was exposed to UV and its cytotoxic impact on neural detachment and lift-off was monitored. The multiplexed detection of cellular activity was reported with a temporal resolution of one minute.


Subject(s)
Biosensing Techniques , Graphite , Animals , Biosensing Techniques/methods , Dielectric Spectroscopy , Electric Impedance , Microelectrodes , Neurons/physiology , Rats
3.
Adv Healthc Mater ; 11(11): e2102701, 2022 06.
Article in English | MEDLINE | ID: mdl-35142451

ABSTRACT

Mimicking microvascular tissue microenvironment in vitro calls for a cytocompatible technique of manufacturing biocompatible hollow microfibers suitable for cell-encapsulation/seeding in and around them. The techniques reported to date either have a limit on the microfiber dimensions or undergo a complex manufacturing process. Here, a microfluidic-based method for cell seeding inside alginate hollow microfibers is designed whereby mouse astrocytes (C8-D1A) are passively seeded on the inner surface of these hollow microfibers. Collagen I and poly-d-lysine, as cell attachment additives, are tested to assess cell adhesion and viability; the results are compared with nonadditive-based hollow microfibers (BARE). The BARE furnishes better cell attachment and higher cell viability immediately after manufacturing, and an increasing trend in the cell viability is observed between Day 0 and Day 2. Swelling analysis using percentage initial weight and width is performed on BARE microfibers furnishing a maximum of 124.1% and 106.1%, respectively. Degradation analysis using weight observed a 62% loss after 3 days, with 46% occurring in the first 12 h. In the frequency sweep test performed, the storage modulus (G') remains comparatively higher than the loss modulus (G″) in the frequency range 0-20 Hz, indicating high elastic behavior of the hollow microfibers.


Subject(s)
Alginates , Microfluidics , Animals , Cell Adhesion , Cell Encapsulation , Hydrogels , Mice , Microfluidics/methods
4.
Adv Biol (Weinh) ; 5(11): e2101026, 2021 11.
Article in English | MEDLINE | ID: mdl-34626101

ABSTRACT

Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.


Subject(s)
Alginates , Graphite , Cell Encapsulation , Hydrogels , Tissue Engineering
5.
PLoS One ; 16(6): e0251812, 2021.
Article in English | MEDLINE | ID: mdl-34077426

ABSTRACT

Growth in open-source hardware designs combined with the decreasing cost of high-quality 3D printers have supported a resurgence of in-house custom lab equipment development. Herein, we describe a low-cost (< $400), open-source CO2 incubator. The system is comprised of a Raspberry Pi computer connected to a 3D printer controller board that has controls for a CO2 sensor, solenoid valve, heater, and thermistors. CO2 is supplied through the sublimation of dry ice stored inside a thermos to create a sustained 5% CO2 supply. The unit is controlled via G-Code commands sent by the Raspberry Pi to the controller board. In addition, we built a custom software application for remote control and used the open-source Grafana dashboard for remote monitoring. Our data show that we can maintain consistent CO2 and temperature levels for over three days without manual interruption. The results from our culture plates and real-time PCR indicate that our incubator performed equally well when compared to a much more expensive commercial CO2 incubator. We have also demonstrated that the antibiotic susceptibility assay can be performed in this low-cost CO2 incubator. Our work also indicates that the system can be connected to incubator chambers of various chamber volumes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbon Dioxide/analysis , Gonorrhea/diagnosis , Incubators/statistics & numerical data , Neisseria gonorrhoeae/growth & development , Printing, Three-Dimensional/instrumentation , Carbon Dioxide/chemistry , Gonorrhea/drug therapy , Gonorrhea/microbiology , Humans , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/isolation & purification , Software
6.
ACS Macro Lett ; 10(6): 732-736, 2021 06 15.
Article in English | MEDLINE | ID: mdl-35549107

ABSTRACT

At present, the blood-brain barrier (BBB) poses a challenge for treating a wide range of central nervous system disorders; reliable BBB models are still needed to understand and manipulate the transfer of molecules into the brain, thereby improving the efficiency of treatments. In this study, hollow, cell-laden microfibers are fabricated and investigated as a starting point for generating BBB models. The genetic effects of the manufacturing process are analyzed to understand the implications of encapsulating cells in this manner. These fibers are created using different manufacturing parameters to understand the effects on wall thickness and overall diameter. Then, dopaminergic rat cells are encapsulated into hollow fibers, which maintained at least 60% live cells throughout the three-day observation period. Lastly, genetic changes tyrosine hydroxylase (TH) and tubulin beta 3 class III (TUBB-3) are investigated to elucidate the effects on cell health and behavior; while the TH levels in encapsulated cells were similar to control cells, showing similar levels of TH synthesis, TUBB-3 was downregulated, indicating lower amounts of cellular neurogenesis.


Subject(s)
Microfluidics , Tyrosine 3-Monooxygenase , Animals , Cell Line , Dopaminergic Neurons , Neurogenesis , Rats , Tyrosine 3-Monooxygenase/genetics
7.
RSC Adv ; 10(7): 4095-4102, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-35492659

ABSTRACT

The microvasculature is a vital organ that distributes nutrients within tissues, and collects waste products from them, and which defines the environmental conditions in both normal and disease situations. Here, a microfluidic chip was developed for the fabrication of poly(ethylene glycol diacrylate) (PEGDA)-based hollow self-standing microvessels having inner dimensions ranging from 15 µm to 73 µm and displaying biocompatibility/cytocompatibility. Macromer solutions were hydrodynamically focused into a single microchannel to form a concentric flow regime, and were subsequently solidified through photopolymerization. This approach uniquely allowed the fabrication of hollow microvessels having a defined structure and integrity suitable for cell culturing.

8.
Glob Chall ; 3(3): 1800112, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31565368

ABSTRACT

Due to the particular structure and functionality of the placenta, most current human placenta drug testing methods are limited to animal models, conventional cell testing, and cohort/controlled testing. Previous studies have produced inconsistent results due to physiological differences between humans and animals and limited availability of human and/or animal models for controlled testing. To overcome these challenges, a placenta-on-a-chip system is developed for studying the exchange of substances to and from the placenta. Caffeine transport across the placental barrier is studied because caffeine is a xenobiotic widely consumed on a daily basis. Since a fetus does not carry the enzymes that inactivate caffeine, when it crosses a placental barrier, high caffeine intake may harm the fetus, so it is important to quantify the rate of caffeine transport across the placenta. In this study, a caffeine concentration of 0.25 mg mL-1 is introduced into the maternal channel, and the resulting changes are observed over a span of 7.5 h. A steady caffeine concentration of 0.1513 mg mL-1 is reached on the maternal side after 6.5 h, and a 0.0033 mg mL-1 concentration on the fetal side is achieved after 5 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...