Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 134(5): 1300-1311, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37022963

ABSTRACT

The purpose of this study was to characterize thermoregulatory and performance responses of elite road-race athletes, while competing in hot, humid, night-time conditions during the 2019 IAAF World Athletic Championships. Male and female athletes, competing in the 20 km racewalk (n = 20 males, 24 females), 50 km racewalk (n = 19 males, 8 females), and marathon (n = 15 males, 22 females) participated. Exposed mean skin (Tsk) and continuous core body (Tc) temperature were recorded with infrared thermography and ingestible telemetry pill, respectively. The range of ambient conditions (recorded roadside) was 29.3°C-32.7°C air temperature, 46%-81% relative humidity, 0.1-1.7 m·s-1 air velocity, and 23.5°C-30.6°C wet bulb globe temperature. Tc increased by 1.5 ± 0.1°C but mean Tsk decreased by 1.5 ± 0.4°C over the duration of the races. Tsk and Tc changed most rapidly at the start of the races and then plateaued, with Tc showing a rapid increase again at the end, in a pattern mirroring pacing. Performance times were between 3% and 20% (mean = 113 ± 6%) longer during the championships compared with the personal best (PB) of athletes. Overall mean performance relative to PB was correlated with the wet-bulb globe temperature (WBGT) of each race (R2 = 0.89), but not with thermophysiological variables (R2 ≤ 0.3). As previously reported in exercise heat stress, in this field study Tc rose with exercise duration, whereas Tsk showed a decline. The latter contradicts the commonly recorded rise and plateau in laboratory studies at similar ambient temperatures but without realistic air movement.NEW & NOTEWORTHY This paper provides a kinetic observation of both core and skin temperatures in 108 elite athletes, during various outdoor competition events, adding to the very limited data so far available in the literature taken during elite competitions. The field skin temperature findings contrast previous laboratory findings, likely due to differences in relative air velocity and its impact on the evaporation of sweat. The rapid rise in skin temperature following cessation of exercise highlights the importance of infrared thermography measurements being taken during motion, not during breaks, when being used as a measurement of skin temperature during exercise.


Subject(s)
Body Temperature Regulation , Sports , Humans , Male , Female , Body Temperature Regulation/physiology , Sweating , Skin Temperature , Exercise/physiology , Hot Temperature
2.
Br J Sports Med ; 56(8): 439-445, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35165084

ABSTRACT

PURPOSE: To determine associations between thermal responses, medical events, performance, heat acclimation and health status during a World Athletics Championships in hot-humid conditions. METHODS: From 305 marathon and race-walk starters, 83 completed a preparticipation questionnaire on health and acclimation. Core (Tcore; ingestible pill) and skin (Tskin; thermal camera) temperatures were measured in-competition in 56 and 107 athletes, respectively. 70 in-race medical events were analysed retrospectively. Performance (% personal best) and did not finish (DNF) were extracted from official results. RESULTS: Peak Tcore during competition reached 39.6°C±0.6°C (maximum 41.1°C). Tskin decreased from 32.2°C±1.3°C to 31.0°C±1.4°C during the races (p<0.001). Tcore was not related to DNF (25% of starters) or medical events (p≥0.150), whereas Tskin, Tskin rate of decrease and Tcore-to-Tskin gradient were (p≤0.029). A third of the athletes reported symptoms in the 10 days preceding the event, mainly insomnia, diarrhoea and stomach pain, with diarrhoea (9% of athletes) increasing the risk of in-race medical events (71% vs 17%, p<0.001). Athletes (63%) who performed 5-30 days heat acclimation before the competition: ranked better (18±13 vs 28±13, p=0.009), displayed a lower peak Tcore (39.4°C±0.4°C vs 39.8°C±0.7°C, p=0.044) and larger in-race decrease in Tskin (-1.4°C±1.0°C vs -0.9°C±1.2°C, p=0.060), than non-acclimated athletes. Although not significant, they also showed lower DNF (19% vs 30%, p=0.273) and medical events (19% vs 32%, p=0.179). CONCLUSION: Tskin, Tskin rate of decrease and Tcore-to-Tskin gradient were important indicators of heat tolerance. While heat-acclimated athletes ranked better, recent diarrhoea represented a significant risk factor for DNF and in-race medical events.


Subject(s)
Body Temperature Regulation , Hot Temperature , Acclimatization , Athletes , Body Temperature Regulation/physiology , Female , Health Status , Humans , Male , Retrospective Studies , Walking
3.
Physiol Meas ; 42(8)2021 08 27.
Article in English | MEDLINE | ID: mdl-34320480

ABSTRACT

Objective. To investigate the use of infrared thermography (IRT) for skin temperature measurement of moving athletes during competition and its sensitivity to factors that are traditionally standardised.Approach. Thermograms were collected for 18 female athletes during the 20 km racewalk at the 2019 World Athletics Championships, with a medium-wave, cooled indium antimonide medium wave infrared band (MWIR) and a long-wave, uncooled microbolometer longwave infrared band (LWIR) infrared camera.Main results. The MWIR provided greater clarity images of motion due to a shorter exposure and response time and produced a higher percentage of acceptable images. Analysing acceptable images only, the LWIR and WMIR produced good levels of agreement, with a bias of -0.1 ± 0.6 °C in mean skin temperature for the LWIR. As the surface area of an ROI was reduced, the measured temperature became less representative of the whole ROI. Compared to measuring the whole area ROI, a single central pixel produced a bias of 0.3 ± 0.3 °C (MWIR) and 0.1 ± 0.4 °C (LWIR) whilst using the maximum and minimum temperature pixels resulted in deviations of 1.3 ± 0.4 °C and -1.1 ± 0.3 °C (MWIR) and 1.2 ± 0.3 °C and -1.3 ± 0.4 °C (LWIR). The sensitivity to air and reflected temperatures was lower for the LWIR camera, due to the higher emissivity of skin in its wavelength.Significance. IRT provides an appropriate tool for the measurement of skin temperature during real-world competition and critically during athlete motion. The cheaper LWIR camera provides a feasible alternative to the MWIR in low rate of motion scenarios, with comparable precision and sensitivity to analysis. However, the LWIR is limited when higher speeds prevent the accurate measurement and ability to capture motion.


Subject(s)
Skin Temperature , Thermography , Athletes , Body Temperature , Cold Temperature , Female , Humans , Infrared Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...