Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Cell ; 72(2): 250-262.e6, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30270107

ABSTRACT

Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains.


Subject(s)
Chromatin/genetics , DNA Repair/genetics , Histones/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , Genomic Instability/genetics , Homologous Recombination/genetics , Humans , K562 Cells , Tumor Suppressor p53-Binding Protein 1/genetics
2.
Nat Struct Mol Biol ; 24(4): 353-361, 2017 04.
Article in English | MEDLINE | ID: mdl-28263325

ABSTRACT

The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells.


Subject(s)
Chromosome Mapping , DNA Breaks, Double-Stranded , Genome, Human , Cell Line , Cluster Analysis , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , DNA Repair/genetics , DNA Replication/drug effects , DNA Replication/genetics , DNA, Intergenic/genetics , G1 Phase/drug effects , G1 Phase/genetics , Histones/metabolism , Humans , Models, Biological , Nuclear Proteins/metabolism , Protein Domains , RNA, Small Interfering/metabolism , Recombination, Genetic/drug effects , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Transcription, Genetic/drug effects
3.
Mol Cell Oncol ; 3(3): e1134411, 2016 May.
Article in English | MEDLINE | ID: mdl-27314089

ABSTRACT

Ataxia telangiectasia mutated (ATM) has been known for decades as the main kinase mediating the DNA double-strand break response. Our recent findings suggest that its major role at the sites of breaks likely resides in its ability to modify both the local chromatin landscape and the global chromosome organization in order to promote repair accuracy.

4.
Genes Dev ; 29(2): 197-211, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25593309

ABSTRACT

How chromatin shapes pathways that promote genome-epigenome integrity in response to DNA damage is an issue of crucial importance. We report that human bromodomain (BRD)-containing proteins, the primary "readers" of acetylated chromatin, are vital for the DNA damage response (DDR). We discovered that more than one-third of all human BRD proteins change localization in response to DNA damage. We identified ZMYND8 (zinc finger and MYND [myeloid, Nervy, and DEAF-1] domain containing 8) as a novel DDR factor that recruits the nucleosome remodeling and histone deacetylation (NuRD) complex to damaged chromatin. Our data define a transcription-associated DDR pathway mediated by ZMYND8 and the NuRD complex that targets DNA damage, including when it occurs within transcriptionally active chromatin, to repress transcription and promote repair by homologous recombination. Thus, our data identify human BRD proteins as key chromatin modulators of the DDR and provide novel insights into how DNA damage within actively transcribed regions requires chromatin-binding proteins to orchestrate the appropriate response in concordance with the damage-associated chromatin context.


Subject(s)
Chromatin/metabolism , DNA Damage , Homologous Recombination/genetics , Receptors, Cell Surface/metabolism , Autoantigens/metabolism , Cell Line, Tumor , Gene Expression Regulation , Gene Silencing , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Protein Binding , Protein Transport/genetics , Receptors for Activated C Kinase , Receptors, Cell Surface/genetics , Tumor Suppressor Proteins
5.
Cell Rep ; 7(6): 2006-18, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24931610

ABSTRACT

Modulating chromatin through histone methylation orchestrates numerous cellular processes. SETD2-dependent trimethylation of histone H3K36 is associated with active transcription. Here, we define a role for H3K36 trimethylation in homologous recombination (HR) repair in human cells. We find that depleting SETD2 generates a mutation signature resembling RAD51 depletion at I-SceI-induced DNA double-strand break (DSB) sites, with significantly increased deletions arising through microhomology-mediated end-joining. We establish a presynaptic role for SETD2 methyltransferase in HR, where it facilitates the recruitment of C-terminal binding protein interacting protein (CtIP) and promotes DSB resection, allowing Replication Protein A (RPA) and RAD51 binding to DNA damage sites. Furthermore, reducing H3K36me3 levels by overexpressing KDM4A/JMJD2A, an oncogene and H3K36me3/2 demethylase, or an H3.3K36M transgene also reduces HR repair events. We propose that error-free HR repair within H3K36me3-decorated transcriptionally active genomic regions promotes cell homeostasis. Moreover, these findings provide insights as to why oncogenic mutations cluster within the H3K36me3 axis.


Subject(s)
Genomic Instability , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Recombinational DNA Repair , DNA Repair , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Homologous Recombination , Humans , Methylation , Protein Binding , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Transfection
6.
Nat Struct Mol Biol ; 21(4): 366-74, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24658350

ABSTRACT

Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation-sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation-associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Homologous Recombination , Cell Line , Chromatin/metabolism , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Histones/metabolism , Humans , Neoplasm Proteins/metabolism , Rad51 Recombinase/metabolism , Transcription, Genetic
7.
Nat Protoc ; 9(3): 517-28, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24504477

ABSTRACT

Recent advances in our understanding of the management and repair of DNA double-strand breaks (DSBs) rely on the study of targeted DSBs that have been induced in living cells by the controlled activity of site-specific endonucleases, usually recombinant restriction enzymes. Here we describe a protocol for quantifying these endonuclease-induced DSBs; this quantification is essential to an interpretation of how DSBs are managed and repaired. A biotinylated double-stranded oligonucleotide is ligated to enzyme-cleaved genomic DNA, allowing the purification of the cleaved DNA on streptavidin beads. The extent of cleavage is then quantified either by quantitative PCR (qPCR) at a given site or at multiple sites by genome-wide techniques (e.g., microarrays or high-throughput sequencing). This technique, named ligation-mediated purification, can be performed in 2 d. It is more accurate and sensitive than existing alternative methods, and it is compatible with genome-wide analysis. It allows the amount of endonuclease-mediated breaks to be precisely compared between two conditions or across the genome, thereby giving insight into the influence of a given factor or of various chromatin contexts on local repair parameters.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , DNA/isolation & purification , Endonucleases/metabolism , Base Sequence , DNA/metabolism , Molecular Sequence Data , Oligonucleotides/genetics , Oligonucleotides/metabolism , Streptavidin
8.
Cell Cycle ; 13(3): 399-407, 2014.
Article in English | MEDLINE | ID: mdl-24240188

ABSTRACT

In mammalian cells, DNA double-strand breaks (DSB) can be repaired by 2 main pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). To give access to DNA damage to the repair machinery the chromatin structure needs to be relaxed, and chromatin modifications play major roles in the control of these processes. Among the chromatin modifications, changes in nucleosome composition can influence DNA damage response as observed with the H2A.Z histone variant in yeast. In mammals, p400, an ATPase of the SWI/SNF family able to incorporate H2A.Z in chromatin, was found to be important for histone ubiquitination and BRCA1 recruitment around DSB or for HR in cooperation with Rad51. Recent data with 293T cells showed that mammalian H2A.Z is recruited to DSBs and is important to control DNA resection, therefore participating both in HR and NHEJ. Here we show that depletion of H2A.Z in the osteosarcoma U2OS cell line and in immortalized human fibroblasts does not change parameters of DNA DSB repair while affecting clonogenic ability and cell cycle distribution. In addition, no recruitment of H2A.Z around DSB can be detected in U2OS cells either after local laser irradiation or by chromatin immunoprecipitation. These data suggest that the role of H2A.Z in DSB repair is not ubiquitous in mammals. In addition, given that important cellular parameters, such as cell viability and cell cycle distribution, are more sensitive to H2A.Z depletion than DNA repair, our results underline the difficulty to investigate the role of versatile factors such as H2A.Z.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Histones/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Transformed , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Lasers
9.
PLoS Genet ; 8(1): e1002460, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22275873

ABSTRACT

Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome.


Subject(s)
Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Repair/genetics , Histones/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded/drug effects , DNA Damage , DNA-Binding Proteins , Gene Expression Regulation , Histones/metabolism , Homologous Recombination , Humans , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Transcription Initiation Site , Cohesins
10.
Dev Med Child Neurol ; 52(8): 725-32, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20653736

ABSTRACT

AIM: To describe a spectrum of intracerebral large artery disease in Aicardi-Goutières syndrome (AGS) associated with mutations in the AGS5 gene SAMHD1. METHOD: We used clinical and radiological description and molecular analysis. RESULTS: Five individuals (three males, two females) were identified as having biallelic mutations in SAMHD1 and a cerebral arteriopathy in association with peripheral vessel involvement resulting in chilblains and ischaemic ulceration. The cerebral vasculopathy was primarily occlusive in three patients (with terminal carotid occlusion and basal collaterals reminiscent of moyamoya syndrome) and aneurysmal in two. Three of the five patients experienced intracerebral haemorrhage, which was fatal in two individuals. Post-mortem examination of one patient suggested that the arteriopathy was inflammatory in origin. INTERPRETATION: Mutations in SAMHD1 are associated with a cerebral vasculopathy which is likely to have an inflammatory aetiology. A similar disease has not been observed in patients with mutations in AGS1 to AGS4, suggesting a particular role for SAMHD1 in vascular homeostasis. Our report raises important questions about the management of patients with mutations in SAMHD1.


Subject(s)
Cerebral Arterial Diseases/genetics , Cerebral Arterial Diseases/physiopathology , Homeostasis/physiology , Monomeric GTP-Binding Proteins/genetics , Proteins/genetics , Carotid Stenosis/genetics , Carotid Stenosis/physiopathology , Child , Child, Preschool , DNA Mutational Analysis , Exodeoxyribonucleases , Female , Humans , Infant , Male , Phosphoproteins , Point Mutation/genetics , SAM Domain and HD Domain-Containing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...