Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 54(76): 10746-10749, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30191228

ABSTRACT

Solid-State NMR results on 13C-Ala/Ser and 13C-Val enriched Argiope argentata prey-wrapping silk show that native, freshly spun aciniform silk nanofibers are dominated by α-helical (∼50% total) and random-coil (∼35% total) secondary structures, with minor ß-sheet nanocrystalline domains (∼15% total). This is the most in-depth study to date characterizing the protein structural conformation of the toughest natural biopolymer: aciniform prey-wrapping silks.


Subject(s)
Fibroins/chemistry , Nanofibers/chemistry , Silk/chemistry , Alanine/chemistry , Amino Acid Sequence , Animals , Carbon Isotopes , Carbon-13 Magnetic Resonance Spectroscopy , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Serine/chemistry , Spiders/chemistry , Valine/chemistry
2.
PLoS One ; 10(4): e0125177, 2015.
Article in English | MEDLINE | ID: mdl-25923109

ABSTRACT

Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity.


Subject(s)
Ecosystem , El Nino-Southern Oscillation , Models, Theoretical , Atmosphere , California , Carbon Cycle , Oceans and Seas , Plants , Seasons , Temperature
3.
Science ; 320(5882): 1490-2, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18497259

ABSTRACT

The absorption of atmospheric carbon dioxide (CO2) into the ocean lowers the pH of the waters. This so-called ocean acidification could have important consequences for marine ecosystems. To better understand the extent of this ocean acidification in coastal waters, we conducted hydrographic surveys along the continental shelf of western North America from central Canada to northern Mexico. We observed seawater that is undersaturated with respect to aragonite upwelling onto large portions of the continental shelf, reaching depths of approximately 40 to 120 meters along most transect lines and all the way to the surface on one transect off northern California. Although seasonal upwelling of the undersaturated waters onto the shelf is a natural phenomenon in this region, the ocean uptake of anthropogenic CO2 has increased the areal extent of the affected area.

SELECTION OF CITATIONS
SEARCH DETAIL
...