Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2754: 221-235, 2024.
Article in English | MEDLINE | ID: mdl-38512670

ABSTRACT

Tauopathies including Alzheimer's disease (AD) are neurodegenerative disorders accompanied by the conversion of functional forms of the microtubule associated protein Tau into non-functional aggregates. A variety of post-translational modifications (PTMs) on Tau precede or accompany the conversion, placing them in position to modulate Tau function as well as its propensity to aggregate. Although Tau PTMs can be characterized by their sites of modification, their total stoichiometry when summed over all sites also is an important metric of their potential impact on function. Here we provide a protocol for rapidly producing recombinant Tau with enzyme-specific PTMs at high stoichiometry in vitro and demonstrate its utility in the context of hyperphosphorylation. Additionally, protocols for estimating phosphorylation and methylation stoichiometry on Tau proteins isolated from any source are presented. Together these methods support experimentation on Tau PTM function over a wide range of experimental conditions.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Phosphorylation , Protein Processing, Post-Translational , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/metabolism , Tauopathies/metabolism , Methylation
2.
PLoS Genet ; 19(3): e1010681, 2023 03.
Article in English | MEDLINE | ID: mdl-36972319

ABSTRACT

Neurofibrillary lesions composed of tau protein aggregates are defining hallmarks of Alzheimer's Disease. Despite tau filaments appearing to spread between networked brain regions in a prion-like manner, certain areas including cerebellum resist trans-synaptic spread of tauopathy and degeneration of their constituent neuronal cell bodies. To identify molecular correlates of resistance, we derived and implemented a ratio of ratios approach for disaggregating gene expression data on the basis of regional vulnerability to tauopathic neurodegeneration. When applied to vulnerable pre-frontal cortex as an internal reference for resistant cerebellum, the approach segregated adaptive changes in expression into two components. The first was enriched for neuron-derived transcripts associated with proteostasis including specific members of the molecular chaperone family and was unique to resistant cerebellum. When produced as purified proteins, each of the identified chaperones depressed aggregation of 2N4R tau in vitro at sub-stoichiometric concentrations, consistent with the expression polarity deduced from ratio of ratios testing. In contrast, the second component enriched for glia- and microglia-derived transcripts associated with neuroinflammation, segregating these pathways from susceptibility to tauopathy. These data support the utility of ratio of ratios testing for establishing the polarity of gene expression changes with respect to selective vulnerability. The approach has the potential to identify new targets for drug discovery predicated on their ability to promote resistance to disease in vulnerable neuron populations.


Subject(s)
Alzheimer Disease , Tauopathies , Gene Regulatory Networks , Age of Onset , Tauopathies/etiology , Tauopathies/genetics , Alzheimer Disease/complications , Transcription, Genetic , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Genetic Loci , Humans
3.
Curr Biol ; 31(12): 2603-2618.e9, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34048707

ABSTRACT

Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.


Subject(s)
Caenorhabditis elegans/microbiology , Genetic Variation , Microbiota/genetics , Microbiota/physiology , Animals , Caenorhabditis elegans Proteins/metabolism , Insulin/metabolism , Phylogeny , Signal Transduction , Transcription Factors/metabolism
4.
Mol Neurobiol ; 57(11): 4704-4719, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32780352

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder without a cure or prevention to date. Hyperphosphorylated tau forms the neurofibrillary tangles (NFTs) that correlate well with the progression of cognitive impairments. Animal studies demonstrated the pathogenic role of hyperphosphorylated tau. Understanding how abnormal phosphorylation renders a normal tau prone to form toxic fibrils is key to delineating molecular pathology and to developing efficacious drugs for AD. Production of a tau bearing the disease-relevant hyperphosphorylation and molecular characters is a pivotal step. Here, we report the preparation and characterization of a recombinant hyperphosphorylated tau (p-tau) with strong relevance to disease. P-tau generated by the PIMAX approach resulted in phosphorylation at multiple epitopes linked to the progression of AD neuropathology. In stark contrast to unmodified tau that required an aggregation inducer, and which had minimal effects on cell functions, p-tau formed inducer-free fibrils that triggered a spike of mitochondrial superoxide, induced apoptosis, and caused cell death at sub-micromolar concentrations. P-tau-induced apoptosis was suppressed by inhibitors for reactive oxygen species. Hyperphosphorylation apparently caused rapid formation of a disease-related conformation. In both aggregation and cytotoxicity, p-tau exhibited seeding activities that converted the unmodified tau into a cytotoxic species with an increased propensity for fibrillization. These characters of p-tau are consistent with the emerging view that hyperphosphorylation causes tau to become an aggregation-prone and cytotoxic species that underlies diffusible pathology in AD and other tauopathies. Our results further suggest that p-tau affords a feasible tool for Alzheimer's disease mechanistic and drug discovery studies.


Subject(s)
Protein Aggregates , tau Proteins/metabolism , Biophysical Phenomena , Cell Death , Cell Line , Cell Survival , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mitochondria/metabolism , Oxidation-Reduction , Phosphorylation , Protein Binding , Protein Isoforms/metabolism , Recombinant Proteins/metabolism , Superoxides/metabolism
5.
Proc Natl Acad Sci U S A ; 114(42): E8855-E8864, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28973913

ABSTRACT

We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the Per2 3'-UTR region: Per2::Luc, which retains the endogenous Per2 3'-UTR and Per2::LucSV, where the endogenous Per2 3'-UTR was replaced by an SV40 late poly(A) signal. To delineate the in vivo functions of Per2 3'-UTR, we analyzed circadian rhythms of Per2::LucSV mice. Interestingly, Per2::LucSV mice displayed more than threefold stronger amplitude in bioluminescence rhythms than Per2::Luc mice, and also exhibited lengthened free-running periods (∼24.0 h), greater phase delays following light pulse, and enhanced temperature compensation relative to Per2::Luc Analysis of the Per2 3'-UTR sequence revealed that miR-24, and to a lesser degree miR-30, suppressed PER2 protein translation, and the reversal of this inhibition in Per2::LucSV augmented PER2::LUC protein level and oscillatory amplitude. Interestingly, Bmal1 mRNA and protein oscillatory amplitude as well as CRY1 protein oscillation were increased in Per2::LucSV mice, suggesting rhythmic overexpression of PER2 enhances expression of Per2 and other core clock genes. Together, these studies provide important mechanistic insights into the regulatory roles of Per2 3'-UTR, miR-24, and PER2 in Per2 expression and core clock function.


Subject(s)
Circadian Rhythm/physiology , MicroRNAs/genetics , Period Circadian Proteins/genetics , 3' Untranslated Regions , Animals , Circadian Clocks/genetics , Gene Expression Regulation , Gene Knock-In Techniques , Luciferases/genetics , Mice, Inbred C57BL , Mice, Transgenic , Period Circadian Proteins/metabolism , Protein Biosynthesis , Temperature
6.
PLoS One ; 12(7): e0180800, 2017.
Article in English | MEDLINE | ID: mdl-28700629

ABSTRACT

Escherichia coli encodes two DNA ligases, ligase A, which is essential under normal laboratory growth conditions, and ligase B, which is not. Here we report potential functions of ligase B. We found that across the entire Enterobacteriaceae family, ligase B is highly conserved in both amino acid identity and synteny with genes associated with oxidative stress. Deletion of ligB sensitized E. coli to specific DNA damaging agents and antibiotics resulted in a weak mutator phenotype, and decreased biofilm formation. Overexpression of ligB caused a dramatic extension of lag phase that eventually resumed normal growth. The ligase function of ligase B was not required to mediate the extended lag phase, as overexpression of a ligase-deficient ligB mutant also blocked growth. Overexpression of ligB during logarithmic growth caused an immediate block of cell growth and DNA replication, and death of about half of cells. These data support a potential role for ligase B in the base excision repair pathway or the mismatch repair pathway.


Subject(s)
DNA Ligases/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , DNA Damage/genetics , DNA Ligases/genetics , DNA Replication/genetics , DNA Replication/physiology , Enterobacteriaceae/genetics , Enterobacteriaceae/metabolism , Oxidative Stress/genetics , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...