Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Blood ; 140(7): 685-705, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35671392

ABSTRACT

Adenosine deaminase (ADA) deficiency causes ∼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.


Subject(s)
Agammaglobulinemia , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Adenosine Deaminase , Agammaglobulinemia/genetics , Child, Preschool , Humans , Infant , Infant, Newborn , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy
3.
Front Genome Ed ; 2: 601541, 2020.
Article in English | MEDLINE | ID: mdl-34713224

ABSTRACT

Monogenic disorders of the blood system have the potential to be treated by autologous stem cell transplantation of ex vivo genetically modified hematopoietic stem and progenitor cells (HSPCs). The sgRNA/Cas9 system allows for precise modification of the genome at single nucleotide resolution. However, the system is reliant on endogenous cellular DNA repair mechanisms to mend a Cas9-induced double stranded break (DSB), either by the non-homologous end joining (NHEJ) pathway or by the cell-cycle regulated homology-directed repair (HDR) pathway. Here, we describe a panel of ectopically expressed DNA repair factors and Cas9 variants assessed for their ability to promote gene correction by HDR or inhibit gene disruption by NHEJ at the HBB locus. Although transient global overexpression of DNA repair factors did not improve the frequency of gene correction in primary HSPCs, localization of factors to the DSB by fusion to the Cas9 protein did alter repair outcomes toward microhomology-mediated end joining (MMEJ) repair, an HDR event. This strategy may be useful when predictable gene editing outcomes are imperative for therapeutic success.

4.
Mol Ther ; 28(1): 328-340, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31628051

ABSTRACT

ß-globin lentiviral vectors (ß-LV) have faced challenges in clinical translation for gene therapy of sickle cell disease (SCD) due to low titer and sub-optimal gene transfer to hematopoietic stem and progenitor cells (HSPCs). To overcome the challenge of preserving efficacious expression while increasing vector performance, we used published genomic and epigenomic data available through ENCODE to redefine enhancer element boundaries of the ß-globin locus control region (LCR) to construct novel ENCODE core sequences. These novel LCR elements were used to design a ß-LV of reduced proviral length, termed CoreGA-AS3-FB, produced at higher titers and possessing superior gene transfer to HSPCs when compared to the full-length parental ß-LV at equal MOI. At low vector copy number, vectors containing the ENCODE core sequences were capable of reversing the sickle phenotype in a mouse model of SCD. These studies provide a ß-LV that will be beneficial for gene therapy of SCD by significantly reducing the cost of vector production and extending the vector supply.


Subject(s)
Anemia, Sickle Cell/therapy , Genetic Therapy/methods , Genetic Vectors , Lentivirus/genetics , Locus Control Region/genetics , Transduction, Genetic/methods , beta-Globins/genetics , Animals , Bone Marrow Cells/metabolism , Disease Models, Animal , HEK293 Cells , Healthy Volunteers , Hematopoietic Stem Cells/metabolism , Humans , Mice , Phenotype , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...